Slodowy slices and universal Poisson deformations
نویسندگان
چکیده
منابع مشابه
Slodowy Slices and Universal Poisson Deformations
We classify the nilpotent orbits in a simple Lie algebra for which the restriction of the adjoint quotient map to a Slodowy slice is the universal Poisson deformation of its central fibre. This generalises work of Brieskorn and Slodowy on subregular orbits. In particular, we find in this way new singular symplectic hypersurfaces of dimension 4 and 6. To the memory of Professor Masaki Maruyama
متن کاملEquations For Nilpotent Varieties and Their Intersections With Slodowy Slices
EQUATIONS FOR NILPOTENT VARIETIES AND THEIR INTERSECTIONS WITH SLODOWY SLICES
متن کاملDeformations of Holomorphic Poisson Manifolds
An unobstructedness theorem is proved for deformations of compact holomorphic Poisson manifolds and applied to a class of examples. These include certain rational surfaces and Hilbert schemes of points on Poisson surfaces. We study in particular the Hilbert schemes of the projective plane and show that a generic deformation is determined by two parameters—an elliptic curve and a translation on ...
متن کاملUniversal deformations, rigidity, and Ihara’s cocycle
In [Iha86b], Ihara constructs a universal cocycle Gal ( Q/Q ) −→ Zp[[t0, t1, t∞]]/ ((t0 + 1)(t1 + 1)(t∞ + 1)− 1) arising from the action of Gal ( Q/Q ) on certain quotients of the Jacobians of the Fermat curves
متن کاملPoisson deformations of affine symplectic varieties II
Let Y be an affine symplectic variety of dimension 2n, and let π : X → Y be a crepant resolution. By the definition, there is a symplectic 2-form σ̄ on the smooth part Yreg ∼= π (Yreg), and it extends to a 2-form σ on X. Since π is crepant, σ is a symplectic 2-form on X. The symplectic structures on X and Y define Poisson structures on them in a natural manner. One can define a Poisson deformati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Compositio Mathematica
سال: 2011
ISSN: 0010-437X,1570-5846
DOI: 10.1112/s0010437x11005550