Skolem Difference Mean Graphs
نویسندگان
چکیده
منابع مشابه
Skolem Odd Difference Mean Graphs
In this paper we define a new labeling called skolem odd difference mean labeling and investigate skolem odd difference meanness of some standard graphs. Let G = (V,E) be a graph with p vertices and q edges. G is said be skolem odd difference mean if there exists a function f : V (G) → {0, 1, 2, 3, . . . , p + 3q − 3} satisfying f is 1−1 and the induced map f : E(G) → {1, 3, 5, . . . , 2q−1} de...
متن کاملskolem odd difference mean graphs
in this paper we define a new labeling called skolem odd difference mean labeling and investigate skolem odd difference meanness of some standard graphs. let g = (v,e) be a graph with p vertices and q edges. g is said be skolem odd difference mean if there exists a function f : v (g) → {0, 1, 2, 3, . . . , p + 3q − 3} satisfying f is 1−1 and the induced map f : e(g) → {1, 3, 5, . . . , 2q−1} d...
متن کاملSkolem difference mean labeling of disconnected graphs
Let G = (V,E) be a graph with p vertices and q edges. G is said to have skolem difference mean labeling if it is possible to label the vertices x ∈ V with distinct elements f(x) from 1, 2, 3, ..., p+ q in such a way that for each edge e = uv, let f∗(e) = l |f(u)−f(v)| 2 m and the resulting labels of the edges are distinct and are from 1, 2, 3, ..., q. A graph that admits a skolem difference mea...
متن کاملExtended Skolem type difference sets
A k-extended Skolem-type 5-tuple difference set of order t is a set of t 5-tuples {(di,1, di,2, di,3, di,4, di,5) | i = 1, 2, . . . , t} such that di,1+di,2+di,3+di,4+di,5 = 0 for 1 ≤ i ≤ t and {|di,j| | 1 ≤ i ≤ t, 1 ≤ j ≤ 5} = {1, 2, . . . , 5t+1}\{k}. In this talk, we will give necessary and sufficient conditions on t and k for the existence of a k-extended Skolem-type 5-tuple difference set ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mapana - Journal of Sciences
سال: 2012
ISSN: 0975-3303,0975-3303
DOI: 10.12723/mjs.23.9