Size-Dependent Passivation Shell and Magnetic Properties in Antiferromagnetic/Ferrimagnetic Core/Shell MnO Nanoparticles
نویسندگان
چکیده
منابع مشابه
Size-dependent passivation shell and magnetic properties in antiferromagnetic/ferrimagnetic core/shell MnO nanoparticles.
The magnetic properties of bimagnetic core/shell nanoparticles consisting of an antiferromagnetic MnO core and a ferrimagnetic passivation shell have been investigated. It is found that the phase of the passivation shell (gamma-Mn(2)O(3) or Mn(3)O(4)) depends on the size of the nanoparticles. Structural and magnetic characterizations concur that while the smallest nanoparticles have a predomina...
متن کاملSize- and Shape-Controlled Synthesis and Properties of Magnetic-Plasmonic Core-Shell Nanoparticles.
Magnetic-plasmonic core-shell nanomaterials offer a wide range of applications across science, engineering and biomedical disciplines. However, the ability to synthesize and understand magnetic-plasmonic core-shell nanoparticles with tunable sizes and shapes remains very limited. This work reports experimental and computational studies on the synthesis and properties of iron oxide-gold core-she...
متن کاملStructural and magnetic properties of core-shell Au/Fe3O4 nanoparticles
We present a systematic study of core-shell Au/Fe3O4 nanoparticles produced by thermal decomposition under mild conditions. The morphology and crystal structure of the nanoparticles revealed the presence of Au core of d = (6.9 ± 1.0) nm surrounded by Fe3O4 shell with a thickness of ~3.5 nm, epitaxially grown onto the Au core surface. The Au/Fe3O4 core-shell structure was demonstrated by high an...
متن کاملSynthesis and Properties of Magnetic-Optical Core-Shell Nanoparticles.
Due to their high integrity, facile surface chemistry, excellent stability, and dual properties from the core and shell materials, magnetic-plasmonic core-shell nanoparticles are of great interest across a number of science, engineering and biomedical disciplines. They are promising for applications in a broad range of areas including catalysis, energy conversion, biological separation, medical...
متن کاملEnhanced Magnetic Properties in Antiferromagnetic-Core/Ferrimagnetic-Shell Nanoparticles
Bi-magnetic core/shell nanoparticles are gaining increasing interest due to their foreseen applications. Inverse antiferromagnetic(AFM)/ferrimagnetic(FiM) core/shell nanoparticles are particularly appealing since they may overcome some of the limitations of conventional FiM/AFM systems. However, virtually no simulations exist on this type of morphology. Here we present systematic Metropolis Mon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Chemical Society
سال: 2010
ISSN: 0002-7863,1520-5126
DOI: 10.1021/ja1021798