Sixth-order superstable two-step methods for second-order initial-value problems
نویسندگان
چکیده
منابع مشابه
Initial value problems for second order hybrid fuzzy differential equations
Usage of fuzzy differential equations (FDEs) is a natural way to model dynamical systems under possibilistic uncertainty. We consider second order hybrid fuzzy differentia
متن کاملImplicit One-step L-stable Generalized Hybrid Methods for the Numerical Solution of First Order Initial Value problems
In this paper, we introduce the new class of implicit L-stable generalized hybrid methods for the numerical solution of first order initial value problems. We generalize the hybrid methods with utilize ynv directly in the right hand side of classical hybrid methods. The numerical experimentation showed that our method is considerably more efficient compared to well known methods used for the n...
متن کاملExplicit One-Step P -Stable Methods for Second Order Periodic Initial Value Problems†
In this paper, we present an explicit one-step method for solving periodic initial value problems of second order ordinary differential equations. The method is P -stable, and of first algebraic order and high phase-lag order. To improve the algebraic order, we give a composition second order scheme with the proposed method and its adjoint. We report some numerical results to illustrate the eff...
متن کاملThe symmetric two-step P-stable nonlinear predictor-corrector methods for the numerical solution of second order initial value problems
In this paper, we propose a modification of the second order method introduced in [Q. Li and X. Y. Wu, A two-step explicit $P$-stable method for solving second order initial value problems, textit{Appl. Math. Comput.} {138} (2003), no. 2-3, 435--442] for the numerical solution of IVPs for second order ODEs. The numerical results obtained by the new method for some...
متن کاملSecond order abstract initial - boundary value problems
Introduction Partial differential equations on bounded domains of R n have traditionally been equipped with homogeneous boundary conditions (usually Dirichlet, Neumann, or Robin). However, other kinds of boundary conditions can also be considered, and for a number of concrete application it seems that dynamic (i.e., time-dependent) boundary conditions are the right ones. Motivated by physical p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1988
ISSN: 0377-0427
DOI: 10.1016/0377-0427(88)90299-3