Sistem Otentikasi Biometrik Berbasis Sinyal EKG Menggunakan Convolutional Neural Network 1 Dimensi
نویسندگان
چکیده
ABSTRAKBiometrik merupakan salah satu analisis karakteristik individu yang saat ini banyak digunakan, seperti sidik jari, pengenalan suara, dan wajah. Metode biometrik tersebut masih memiliki kelemahan mudah untuk dimanipulasi. Oleh karena itu, penelitian akan menggunakan sinyal Elektrokardiogram (EKG) sebagai metode biometrik. Sinyal EKG keunikan pada setiap sehingga sulit Penelitian mengembangkan sistem otentikasi berbasis EKG. Data digunakan berasal dari ECG-ID database dengan jumlah 90 subjek. hanya gelombang PQRST input model Convolutional Neural Network 1 Dimensi (CNN). Hasil akurasi diperoleh menunjukkan 92.2%. Dengan demikian, dikembangkan memungkinkan biometrik.Kata kunci: Biometrik, EKG, NetworkABSTRACTBiometrics is analyses individual characteristics that are currently widely used, such as fingerprints, voice recognition, and face recognition. The biometric method still has weaknesses, being easy to manipulate. Therefore, this study will use an Electrocardiogram (ECG) signal a method. ECG unique each individual, so it not This develops authentication system based on signals. data used comes from the with total of subjects. only waves for 1-Dimensional (CNN) model. accuracy results obtained show Thus, developed allows be authentication.Keywords: Biometric, Signal,
منابع مشابه
Sistem Informasi Geografis Potensi Wilayah Kabupaten Banyuasin Berbasis Web
Development of information technology in the field of spatial data processing has helped many digital mapping. In the present study, the authors will empower geographic information systems (GIS) for geographic data processing potential Banyuasin district. The potential of the region are agriculture, farming, and industry. The method used to develop the GIS is the waterfall approach models. Afte...
متن کاملSistem pendukung keputusan kelayakan TKI ke luar negeri menggunakan FMADM
BP3TKI Palembang is the government agencies that coordinate, execute and selection of prospective migrants registration and placement. To simplify the existing procedures and improve decision-making is necessary to build a decision support system (DSS) to determine eligibility for employment abroad by applying Fuzzy Multiple Attribute Decision Making (FMADM), using the linear sequential systems...
متن کاملA Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملDouble-Star Detection Using Convolutional Neural Network in Atmospheric Turbulence
In this paper, we investigate the usage of machine learning in the detection and recognition of double stars. To do this, numerous images including one star and double stars are simulated. Then, 100 terms of Zernike expansion with random coefficients are considered as aberrations to impose on the aforementioned images. Also, a telescope with a specific aperture is simulated. In this work, two k...
متن کاملEMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MIND (Multimedia Artificial Intelligent Networking Database) journal
سال: 2022
ISSN: ['2528-0902', '2528-0015']
DOI: https://doi.org/10.26760/mindjournal.v7i1.1-10