Singularly perturbed Volterra integral equations with weakly singular kernels
نویسندگان
چکیده
منابع مشابه
COLLOCATION METHOD FOR FREDHOLM-VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY KERNELS
In this paper it is shown that the use of uniform meshes leads to optimal convergence rates provided that the analytical solutions of a particular class of Fredholm-Volterra integral equations (FVIEs) are smooth.
متن کاملcollocation method for fredholm-volterra integral equations with weakly kernels
in this paper it is shown that the use of uniform meshes leads to optimal convergence rates provided that the analytical solutions of a particular class of fredholm-volterra integral equations (fvies) are smooth.
متن کاملWeakly Singular Volterra and Fredholm-volterra Integral Equations
Some existence and uniqueness theorems are established for weakly singular Volterra and Fredholm-Volterra integral equations in C[a, b]. Our method is based on fixed point theorems which are applied to the iterated operator and we apply the fiber Picard operator theorem to establish differentiability with respect to parameter. This method can be applied only for linear equations because otherwi...
متن کاملSingularly Perturbed Integral Equations
We study singularly perturbed Fredholm equations of the second kind. We give sufficient conditions for existence and uniqueness of solutions and describe the asymptotic behavior of the solutions. We examine the relationship between the solutions of the perturbed and unperturbed equations, exhibiting the degeneration of the boundary layer to delta functions. The results are applied to several ex...
متن کاملA Hybrid Collocation Method for Volterra Integral Equations with Weakly Singular Kernels
The commonly used graded piecewise polynomial collocation method for weakly singular Volterra integral equations may cause serious round-off error problems due to its use of extremely nonuniform partitions and the sensitivity of such time-dependent equations to round-off errors. The singularity preserving (nonpolynomial) collocation method is known to have only local convergence. To overcome th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 2002
ISSN: 0161-1712,1687-0425
DOI: 10.1155/s016117120201325x