Singular solutions of the BBM equation: analytical and numerical study
نویسندگان
چکیده
Abstract We show that the Benjamin–Bona–Mahony (BBM) equation admits stable travelling wave solutions representing a sharp transition from constant state to periodic train. The is determined by parameters of train: length, amplitude and phase velocity, satisfies both generalized Rankine–Hugoniot conditions for exact BBM its averaged counterpart. Such shock-like structures exist if velocity train not less than solution averaged. To validate accuracy numerical method, we derive (singular) solitary limit Whitham system compare corresponding analytical solutions. find good agreement between results
منابع مشابه
Elliptic solutions to a generalized BBM equation
An approach is proposed to obtain some exact explicit solutions in terms of the Weierstrass’ elliptic function ℘ to a generalized Benjamin-Bona-Mahony (BBM) equation. Conditions for periodic and solitary wave like solutions can be expressed compactly in terms of the invariants of ℘. The approach unifies recently established ad-hoc methods to a certain extent. Evaluation of a balancing principle...
متن کاملExplicit multiple singular periodic solutions and singular soliton solutions to KdV equation
Based on some stationary periodic solutions and stationary soliton solutions, one studies the general solution for the relative lax system, and a number of exact solutions to the Korteweg-de Vries (KdV) equation are first constructed by the known Darboux transformation, these solutions include double and triple singular periodic solutions as well as singular soliton solutions whose amplitude d...
متن کاملAccuracy of analytical-numerical solutions of the Michaelis-Menten equation
It is the aim of this paper to investigate a suitable approach to compute solutions of the powerful Michaelis-Menten enzyme reaction equation with less computational effort. We obtain analytical-numerical solutions using piecewise finite series by means of the differential transformation method, DTM. In addition, we compute a global analytical solution by a modal series expansion. The Michaelis...
متن کاملAnalytical solutions for the fractional Fisher's equation
In this paper, we consider the inhomogeneous time-fractional nonlinear Fisher equation with three known boundary conditions. We first apply a modified Homotopy perturbation method for translating the proposed problem to a set of linear problems. Then we use the separation variables method to solve obtained problems. In examples, we illustrate that by right choice of source term in the modified...
متن کاملInvestigation of analytical and numerical solutions for one-dimensional independent-oftime Schrödinger Equation
In this paper, the numerical solution methods of one- particale, one – dimensional time- independentSchrodinger equation are presented that allows one to obtain accurate bound state eigen values andeigen functions for an arbitrary potential energy function V(x). These methods included the FEM(Finite Element Method), Cooly, Numerov and others. Here we considered the Numerov method inmore details...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinearity
سال: 2021
ISSN: ['0951-7715', '1361-6544']
DOI: https://doi.org/10.1088/1361-6544/ac3921