Singular Rouquier complexes

نویسندگان

چکیده

We generalise the construction of Rouquier complexes to setting singular Soergel bimodules by taking minimal restriction complexes. show that they retain many properties ordinary complexes: are delta-split, satisfy a vanishing formula and, when Soergel's conjecture holds perverse. As an application, we use establish Hodge theory for bimodules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rouquier Complexes

1.1. Setup. In this talk k is a field of characteristic 0. Let (W,S) be a Coxeter group with |S| = n < ∞. Also we let V = ∑ s∈S kes be the reflection representation of W , and R = k[V ]. R is a graded algebra with V ∗ in degree 2. We abbreviate M ⊗R N = MN for a right R-module M and a left R-module N . We let {αs}s∈S be the dual basis of {es}s∈S , which can be considered as elements in V ∗ ⊂ R....

متن کامل

Rouquier Complexes are Functorial over Braid Cobordisms

Using the diagrammatic calculus for Soergel bimodules developed by B. Elias and M. Khovanov, we show that Rouquier complexes are functorial over braid cobordisms. We explicitly describe the chain maps which correspond to movie move generators.

متن کامل

Beyond Rouquier Partitions

We obtain closed formulas, in terms of Littlewood-Richardson coefficients, for the canonical basis elements of the Fock space representation of Uv(ŝle) which are labelled by partitions having ‘locally small’ e-quotients and arbitrary e-cores. We further show that upon evaluation at v = 1, this gives the corresponding decomposition numbers of the q-Schur algebra in characteristic l (where q is a...

متن کامل

Representations of Khovanov-lauda-rouquier Algebras Iii: Symmetric Affine Type

We develop the homological theory of KLR algebras of symmetric affine type. For each PBW basis, a family of standard modules is constructed which categorifies the PBW basis.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of The London Mathematical Society

سال: 2022

ISSN: ['1460-244X', '0024-6115', '1234-5678']

DOI: https://doi.org/10.1112/plms.12483