Singular points and Lie rotated vector fields
نویسندگان
چکیده
منابع مشابه
Poincaré and Lie renormalized forms for regular singular points of vector fields in the plane
We discuss the local behaviour of vector fields in the plane R around a regular singular point, using recently introduced reduced normal forms, i.e. Poincaré and Lie renormalized forms [30, 31, 32]. We give a complete classification, and provide explicit formulas, using Poincaré renormalized forms for non-degenerate cases, and Lie ones for certain degenerate cases. Both schemes are completely a...
متن کاملHarmonicity and Minimality of Vector Fields on Lorentzian Lie Groups
We consider four-dimensional lie groups equipped with left-invariant Lorentzian Einstein metrics, and determine the harmonicity properties of vector fields on these spaces. In some cases, all these vector fields are critical points for the energy functional restricted to vector fields. We also classify vector fields defining harmonic maps, and calculate explicitly the energy of t...
متن کاملLie algebras of vector fields
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version ...
متن کاملVector Fields and Nilpotent Lie Algebras
In other words, we want to write the corresponding trajectory t → x(t) in closed form. Of course, since this cannot be done for most differential equations, it is important to find a means of approximating a general flow by a flow which is explicitly integrable in closed form. In this paper we describe an infinite dimensional family of explicitly integrable flows E; in a companion paper [6] we ...
متن کاملGeneralized Helices and Singular Points
In this paper, we define X-slant helix in Euclidean 3-space and we obtain helix, slant helix, clad and g-clad helix as special case of the X-slant helix. Then we study Darboux, tangential darboux developable surfaces and their singular points. Especially we show that the striction lines of these surfaces are singular locus of the surfaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 2000
ISSN: 0161-1712,1687-0425
DOI: 10.1155/s016117120001005x