Singular perturbation of relaxed periodic orbits
نویسندگان
چکیده
منابع مشابه
Persistent Homoclinic Orbits for Nonlinear Schrödinger Equation Under Singular Perturbation
Existence of homoclinic orbits in the cubic nonlinear Schrödinger equation under singular perturbations is proved. Emphasis is placed upon the regularity of the semigroup eǫt∂ 2 x at ǫ = 0. This article is a substantial generalization of [3], and motivated by the effort of Dr. Zeng [9] [8]. The mistake of Zeng in [8] is corrected with a normal form transform approach. Both one and two unstable ...
متن کاملExistence of Periodic Orbits for Singular-hyperbolic Sets
It is well known that on every compact 3-manifold there is a C flow displaying a singular-hyperbolic isolated set which has no periodic orbits [BDV], [M1]. By contrast, in this paper we prove that every singular-hyperbolic attracting set of a C flow on a compact 3manifold has a periodic orbit. 2000 Math. Subj. Class. Primary: 37D30; Secondary: 37D45.
متن کاملA nonlocal singular perturbation problem with periodic well potential
For a one-dimensional nonlocal nonconvex singular perturbation problem with a noncoercive periodic well potential, we prove a Γ-convergence theorem and show compactness up to translation in all L and certain Orlicz spaces for sequences of bounded energy. This generalizes work of Alberti, Bouchitté and Seppecher [1] for the coercive two-well case. The theorem has applications to a certain thin-f...
متن کاملSingular Perturbation Theory for Homoclinic Orbits in a Class of Near-Integrable Dissipative Systems
This paper presents a new unified theory of orbits homoclinic to resonance bands in a class of near-integrable dissipative systems. It describes three sets of conditions, each of which implies the existence of homoclinic or heteroclinic orbits that connect equilibria or periodic orbits in a resonance band. These homoclinic and heteroclinic orbits are born under a given small dissipative perturb...
متن کاملSingular Perturbation Theory for Homoclinic Orbits in a Class of Near-Integrable Hamiltonian Systems∗
This paper describes a new type of orbits homoclinic to resonance bands in a class of near-integrable Hamiltonian systems. It presents a constructive method for establishing whether small conservative perturbations of a family of heteroclinic orbits that connect pairs of points on a circle of equilibria will yield transverse homoclinic connections between periodic orbits in the resonance band r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 1987
ISSN: 0022-0396
DOI: 10.1016/0022-0396(87)90024-6