Singular Minimal Surfaces which are Minimal

نویسندگان

چکیده

In the present paper, we discuss singular minimal surfaces in Euclidean $3-$space $\mathbb{R}^{3}$ which are minimal. Such a surface is nothing but plane, trivial outcome. However, non-trivial outcome obtained when modify usual condition of minimality by using special semi-symmetric metric connection instead Levi-Civita on $\mathbb{R}^{3}$. With this new connection, prove that, besides planes, generalized cylinders, providing their explicit equations. A observed use non-metric connection. Furthermore, our discussion adapted to Lorentz-Minkowski 3-space.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Digital cohomology groups of certain minimal surfaces

In this study, we compute simplicial cohomology groups with different coefficients of a connected sum of certain minimal simple surfaces by using the universal coefficient theorem for cohomology groups. The method used in this paper is a different way to compute digital cohomology groups of minimal simple surfaces. We also prove some theorems related to degree properties of a map on digital sph...

متن کامل

Classification of Surfaces in R which are centroaffine-minimal and equiaffine-minimal

We classify all surfaces which are both, centroaffine-minimal and equiaffineminimal in R3.

متن کامل

Minimal nets and minimal minimal surfaces

Acta Crystallographica Section A: Foundations of Crystallography covers theoretical and fundamental aspects of the structure of matter. The journal is the prime forum for research in diffraction physics and the theory of crystallographic structure determination by diffraction methods using X-rays, neutrons and electrons. The structures include periodic and aperiodic crystals, and non-periodic d...

متن کامل

Minimal Surfaces

This summer, I worked with Professor Ailana Fraser and studied free boundary minimal surfaces immersed in the unit ball. These surfaces have zero mean curvature everywhere and meet the ball orthogonally. Let such a surface be denoted Σ. Consider the set of conformal transformations of the unit ball, and let any surface obtained by these transformations be denoted γ(Σ). The questions that we con...

متن کامل

On the Existence of Minimal Surfaces with Singular Boundaries

In 1931, Jesse Douglas showed that in Rn, every set of k rectifiable Jordan curves, with k ≥ 2, bounds an area-minimizing minimal surface with prescribed topological type if a “condition of cohesion” is satisfied. In this paper, it is established that under similar conditions, this result can be extended to non-Jordan curves.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Universal journal of mathematics and applications

سال: 2021

ISSN: ['2619-9653']

DOI: https://doi.org/10.32323/ujma.984462