Singular Equivalences Induced by Bimodules and Quadratic Monomial Algebras

نویسندگان

چکیده

We investigate the problem when tensor functor by a bimodule yields singular equivalence. It turns out that this is equivalent to one Hom given same induces triangle equivalence between homotopy categories of acyclic complexes injective modules. give conditions on appears in pair bimodules, defines with level. construct an explicit combinatorial manner, which quadratic monomial algebra and its associated radical square zero. Under certain include Gorenstein cases, does appear bimodules defining

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morita Equivalences Induced by Bimodules over Hopf-galois Extensions

Let H be a Hopf algebra, and A, B be H-Galois extensions. We investigate the category AM H B of relative Hopf bimodules, and the Morita equivalences between A and B induced by them. Introduction This paper is a contribution to the representation theory of Hopf-Galois extensions, as originated by Schneider in [15]. More specifically, we consider the following questions. Let H be a Hopf algebra, ...

متن کامل

A-H-bimodules and equivalences

In [6, Theorem 2.2] Doi gave a Hopf-algebraic proof of a generalization of Oberst’s theorem on affine quotients of affine schemes. He considered a commutative Hopf algebra H over a field, coacting on a commutative H-comodule algebra A. If AcoH denotes the subalgebra of coinvariant elements of A and β : A ⊗AcoH A −→ A ⊗H the canonical map, he proved that the following are equivalent: (a) AcoH ⊂ ...

متن کامل

Monomial Hopf algebras ✩

Let K be a field of characteristic 0 containing all roots of unity. We classified all the Hopf structures on monomial K-coalgebras, or, in dual version, on monomial K-algebras.  2004 Elsevier Inc. All rights reserved.

متن کامل

Derived equivalences and Gorenstein algebras

In this note, we introduce the notion of Gorenstein algebras. Let R be a commutative Gorenstein ring and A a noetherian R-algebra. We call A a Gorenstein R-algebra if A has Gorenstein dimension zero as an R-module (see [2]), add(D(AA)) = PA, where D = HomR(−, R), and Ap is projective as an Rpmodule for all p ∈ Spec R with dim Rp < dim R. Note that if dim R = ∞ then a Gorenstein R-algebra A is p...

متن کامل

Bimodules associated to vertex operator algebras

Let V be a vertex operator algebra and m,n ≥ 0. We construct an An(V )Am(V )-bimodule An,m(V ) which determines the action of V from the level m subspace to level n subspace of an admissible V -module. We show how to use An,m(V ) to construct naturally admissible V -modules from Am(V )-modules. We also determine the structure of An,m(V ) when V is rational. 2000MSC:17B69

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebras and Representation Theory

سال: 2021

ISSN: ['1386-923X', '1572-9079']

DOI: https://doi.org/10.1007/s10468-021-10104-3