Single-Photon Nonlinear Optics with Graphene Plasmons
نویسندگان
چکیده
منابع مشابه
Single-photon nonlinear optics with graphene plasmons.
We show that it is possible to realize significant nonlinear optical interactions at the few photon level in graphene nanostructures. Our approach takes advantage of the electric field enhancement associated with the strong confinement of graphene plasmons and the large intrinsic nonlinearity of graphene. Such a system could provide a powerful platform for quantum nonlinear optical control of l...
متن کاملSingle photon nonlinear optics in photonic crystals
We coherently probe a quantum dot that is strongly coupled to a photonic crystal nano-cavity by scattering of a resonant laser beam. The coupled system’s response is highly nonlinear as the quantum dot saturates with nearly one photon per cavity lifetime. This system enables large amplitude and phase shifts of a signal beam via a control beam, both at single photon levels. We demonstrate photon...
متن کاملNonlinear optics with less than one photon.
We demonstrate suppression and enhancement of spontaneous parametric down-conversion via quantum interference with two weak fields from a local oscillator (LO). Effectively, pairs of LO photons up-convert with high efficiency for appropriate phase settings, exhibiting an effective nonlinearity enhanced by at least 10 orders of magnitude. This constitutes a two-photon switch and promises to be a...
متن کاملQuantum nonlinear optics — photon by photon
685 Photons traveling through a vacuum do not interact with each other. This linearity in light propagation, in combination with the high frequency and hence large bandwidth provided by waves at optical frequencies, has made optical signals the preferred method for communicating information over long distances. In contrast, the processing of information requires some form of interaction between...
متن کاملNonlinear Terahertz Absorption of Graphene Plasmons.
Subwavelength graphene structures support localized plasmonic resonances in the terahertz and mid-infrared spectral regimes. The strong field confinement at the resonant frequency is predicted to significantly enhance the light-graphene interaction, which could enable nonlinear optics at low intensity in atomically thin, subwavelength devices. To date, the nonlinear response of graphene plasmon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2013
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.111.247401