Simultaneous test procedures in multivariate analysis of variance
نویسندگان
چکیده
منابع مشابه
Multivariate analysis of variance test for gene set analysis
MOTIVATION Gene class testing (GCT) or gene set analysis (GSA) is a statistical approach to determine whether some functionally predefined sets of genes express differently under different experimental conditions. Shortcomings of the Fisher's exact test for the overrepresentation analysis are illustrated by an example. Most alternative GSA methods are developed for data collected from two exper...
متن کاملMultivariate Analysis of Variance
We provide an expository presentation of multivariate analysis of variance (MANOVA) for both consumers of research and investigators by capitalizing on its relation to univariate analysis of variance models. We address several questions: (a) Why should one use MANOVA. 9 (b) What is the structure of MANOVA? (C) How are MANOVA test statistics obtained and interpreted? (d) How are MANOVA follow-up...
متن کاملMultivariate Analysis of Variance
1. Introduction In many agricultural experiments, generally the data on more than one character is observed. One common example is grain yield and straw yield. The other characters on which the data is generally observed are the plant height, number of green leaves, germination count, etc. The analysis is normally done only on the grain yield and the best treatment is identified on the basis of...
متن کاملanalysis of power in the network society
اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrika
سال: 1968
ISSN: 0006-3444,1464-3510
DOI: 10.1093/biomet/55.3.489