Simultaneous approximation by Bernstein polynomials with integer coefficients

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation with Bernstein-Szegö polynomials

We present approximation kernels for orthogonal expansions with respect to Bernstein-Szegö polynomials. The construction is derived from known results for Chebyshev polynomials of the first kind and does not pose any restrictions on the Bernstein-Szegö polynomials.

متن کامل

Chebyshev Polynomials with Integer Coefficients

We study the asymptotic structure of polynomials with integer coef cients and smallest uniform norms on an interval of the real line Introducing methods of the weighted potential theory into this problem we improve the bounds for the multiplicities of some factors of the integer Chebyshev polynomials Introduction Let Pn C and Pn Z be the sets of algebraic polynomials of degree at most n respect...

متن کامل

Small Polynomials with Integer Coefficients

The primary goal of this paper is the study of polynomials with integer coefficients that minimize the sup norm on the set E. In particular, we consider the asymptotic behavior of these polynomials and of their zeros. Let Pn(C) and Pn(Z) be the classes of algebraic polynomials of degree at most n, respectively with complex and with integer coefficients. The problem of minimizing the uniform nor...

متن کامل

On D5-polynomials with integer coefficients

We give a family of D5-polynomials with integer coefficients whose splitting fields over Q are unramified cyclic quintic extensions of quadratic fields. Our polynomials are constructed by using Fibonacci, Lucas numbers and units of certain cyclic quartic fields.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 2019

ISSN: 0021-9045

DOI: 10.1016/j.jat.2018.08.003