Simultaneous approximation by Bernstein polynomials with integer coefficients
نویسندگان
چکیده
منابع مشابه
Approximation with Bernstein-Szegö polynomials
We present approximation kernels for orthogonal expansions with respect to Bernstein-Szegö polynomials. The construction is derived from known results for Chebyshev polynomials of the first kind and does not pose any restrictions on the Bernstein-Szegö polynomials.
متن کاملChebyshev Polynomials with Integer Coefficients
We study the asymptotic structure of polynomials with integer coef cients and smallest uniform norms on an interval of the real line Introducing methods of the weighted potential theory into this problem we improve the bounds for the multiplicities of some factors of the integer Chebyshev polynomials Introduction Let Pn C and Pn Z be the sets of algebraic polynomials of degree at most n respect...
متن کاملSmall Polynomials with Integer Coefficients
The primary goal of this paper is the study of polynomials with integer coefficients that minimize the sup norm on the set E. In particular, we consider the asymptotic behavior of these polynomials and of their zeros. Let Pn(C) and Pn(Z) be the classes of algebraic polynomials of degree at most n, respectively with complex and with integer coefficients. The problem of minimizing the uniform nor...
متن کاملOn D5-polynomials with integer coefficients
We give a family of D5-polynomials with integer coefficients whose splitting fields over Q are unramified cyclic quintic extensions of quadratic fields. Our polynomials are constructed by using Fibonacci, Lucas numbers and units of certain cyclic quartic fields.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 2019
ISSN: 0021-9045
DOI: 10.1016/j.jat.2018.08.003