Simulation of many-body interactions by conditional geometric phases

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of many-body interactions by conditional geometric phases

It is shown how to exactly simulate many-body interactions and multiqubit gates by coupling finite dimensional systems, e.g., qubits with a continuous variable. Cyclic evolution in the phase space of such a variable gives rise to a geometric phase, depending on a product of commuting operators. The latter allows one to simulate many-body Hamiltonians and nonlinear Hamiltonians, and to implement...

متن کامل

A geometric study of many body systems

An n-body system is a labelled collection of n point masses in a Euclidean space, and their congruence and internal symmetry properties involve a rich mathematical structure which is investigated in the framework of equivariant Riemannian geometry. Some basic concepts are nconfiguration, configuration space, internal space, shape space, Jacobi transformation and weighted root system. The latter...

متن کامل

Minimizing Effective Many-Body Interactions

A simple two-level model is developed and used to test the properties of effective interactions for performing nuclear structure calculations in truncated model spaces. It is shown that the effective manybody interactions sensitively depend on the choice of the single-particle basis and they appear to be minimized when a self-consistent HartreeFock basis is used.

متن کامل

MCMC curve sampling and geometric conditional simulation

We present an algorithm to generate samples from probability distributions on the space of curves. Traditional curve evolution methods use gradient descent to find a local minimum of a specified energy functional. Here, we view the energy functional as a negative log probability distribution and sample from it using a Markov chain Monte Carlo (MCMC) algorithm. We define a proposal distribution ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review A

سال: 2002

ISSN: 1050-2947,1094-1622

DOI: 10.1103/physreva.65.032327