Simplifying models and estimating grasp performance for comparing dynamic hand orthosis concepts
نویسندگان
چکیده
منابع مشابه
Performance Evaluation of Dynamic Modulus Predictive Models for Asphalt Mixtures
Dynamic modulus characterizes the viscoelastic behavior of asphalt materials and is the most important input parameter for design and rehabilitation of flexible pavements using Mechanistic–Empirical Pavement Design Guide (MEPDG). Laboratory determination of dynamic modulus is very expensive and time consuming. To overcome this challenge, several predictive models were developed to determine dyn...
متن کاملdiagnostic and developmental potentials of dynamic assessment for writing skill
این پایان نامه بدنبال بررسی کاربرد ارزیابی مستمر در یک محیط یادگیری زبان دوم از طریق طرح چهار سوال تحقیق زیر بود: (1) درک توانایی های فراگیران زمانیکه که از طریق برآورد عملکرد مستقل آنها امکان پذیر نباشد اما در طول جلسات ارزیابی مستمر مشخص شوند; (2) امکان تقویت توانایی های فراگیران از طریق ارزیابی مستمر; (3) سودمندی ارزیابی مستمر در هدایت آموزش فردی به سمتی که به منطقه ی تقریبی رشد افراد حساس ا...
15 صفحه اولImproving grasp performance using in-hand proximity and contact sensing
We describe the grasping and manipulation strategy that we employed at the autonomous track of the Robotic Grasping and Manipulation Competition at IROS 2016. A salient feature of our architecture is the tight coupling between visual (Asus Xtion) and tactile perception (Robotic Materials), to reduce the uncertainty in sensing and actuation. We demonstrate the importance of tactile sensing and r...
متن کاملEstimating and comparing thermal performance curves
I show how one can estimate the shape of a thermal performance curve using information theory. This approach ranks plausible models by their Akaike information criterion (AIC), which is a measure of a model’s ability to describe the data discounted by the model’s complexity. I analyze previously published data to demonstrate how one applies this approach to describe a thermal performance curve....
متن کاملComparing dynamic causal models.
This article describes the use of Bayes factors for comparing dynamic causal models (DCMs). DCMs are used to make inferences about effective connectivity from functional magnetic resonance imaging (fMRI) data. These inferences, however, are contingent upon assumptions about model structure, that is, the connectivity pattern between the regions included in the model. Given the current lack of de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2019
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0220147