Simplified Methods for Eigenvalue Assignment
نویسندگان
چکیده
منابع مشابه
Efficient Eigenvalue Assignment for Large Space Structures
A novel and efficient approach for the eigenvalue assignment of large, first-order, time-invariant systems is developed using full-state feedback and output feedback. The full-state feedback approach basically consists of three steps. First, a Schur decomposition is applied to triangularize the state matrix. Second, a series of coordinate rotations (Givens rotations) is used to move the eigenva...
متن کاملPartial Eigenvalue Assignment for Large Observer Problems
The construction of a closed-loop observer for linear control systems and the associated eigenvalue assignment problem are classical tasks in Control Theory. The present paper describes an algorithm for the solution of this eigenvalue assignment problem. The algorithm is based on the implicitly restarted Arnoldi method, and is well suited for large-scale problems, that require the (re)assignmen...
متن کاملislanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولNonlinear Eigenvalue Problems: A Challenge for Modern Eigenvalue Methods
We discuss the state of the art in numerical solution methods for large scale polynomial or rational eigenvalue problems. We present the currently available solution methods such as the Jacobi-Davidson, Arnoldi or the rational Krylov method and analyze their properties. We briefly introduce a new linearization technique and demonstrate how it can be used to improve structure preservation and wi...
متن کاملEigenvalue Bounds Versus Semidefinite Relaxations for the Quadratic Assignment Problem
It was recently demonstrated that a well-known eigenvalue bound for the Quadratic Assignment Problem (QAP) actually corresponds to a semideenite programming (SDP) relaxation. However, for this bound to be computationally useful the assignment constraints of the QAP must rst be eliminated, and the bound then applied to a lower-dimensional problem. The resulting \projected eigenvalue bound" is on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Pure Mathematics
سال: 2015
ISSN: 2160-0368,2160-0384
DOI: 10.4236/apm.2015.57037