Simple Complex Tori of Algebraic Dimension 0

نویسندگان

چکیده

Using Galois theory, we explicitly construct (in all complex dimensions $$g\ge 2$$ ) an infinite family of simple $$g$$ -dimensional tori $$T$$ that enjoy the following properties: $$\bullet$$ Picard number is $$0;$$ in particular, algebraic dimension $$0$$ ; if $$T^\vee$$ dual , then $$\mathrm{Hom}(T,T^\vee)=\{0\}$$ automorphism group $$\mathrm{Aut}(T)$$ isomorphic to $$\{\pm 1\} \times \mathbb Z^{g-1}$$ endomorphism algebra $$\mathrm{End}^0(T)$$ a purely imaginary field degree $$2g$$ .

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Essential Dimension of Algebraic Tori

The essential dimension is a numerical invariant of an algebraic group G which may be thought of as a measure of complexity of G-torsors over fields. A recent theorem of N. Karpenko and A. Merkurjev gives a simple formula for the essential dimension of a finite p-group. We obtain similar formulas for the essential p-dimension of a broad class of groups, which includes all algebraic tori.

متن کامل

ESSENTIAL p-DIMENSION OF ALGEBRAIC TORI

The essential dimension is a numerical invariant of an algebraic group G which may be thought of as a measure of complexity of G-torsors over fields. A recent theorem of N. Karpenko and A. Merkurjev gives a simple formula for the essential dimension of a finite p-group. We obtain similar formulas for the essential p-dimension of a broader class of groups, which includes all algebraic tori.

متن کامل

Tori and essential dimension

The present paper deals with algebraic tori and essential dimension but in three unrelated contexts. After a recollection on essential dimension and generic torsors we explicitly construct a generic torsor for PGLn, n ≥ 5 odd. We also discuss the so called “tori method” which gives a geometric proof of a result of Ledet on the essential dimension of a cyclic group (see [4, 5]). In the last sect...

متن کامل

Algebraic tori in cryptography

We give a mathematical interpretation in terms of algebraic tori of Lucas-based cryptosystems, XTR, and the conjectural generalizations in [2]. We show that the varieties underlying these systems are quotients of algebraic tori by actions of products of symmetric groups. Further, we use these varieties to disprove conjectures from [2].

متن کامل

Motivic Invariants of Algebraic Tori

We prove a trace formula and a global form of Denef and Loeser’s motivic monodromy conjecture for tamely ramified algebraic tori over a discretely valued field. If the torus has purely additive reduction, the trace formula gives a cohomological interpretation for the number of components of the Néron model.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Steklov Institute of Mathematics

سال: 2023

ISSN: ['1531-8605', '0081-5438']

DOI: https://doi.org/10.1134/s0081543823010029