Similarities of Model Predictive Control and Constrained Direct Inverse
نویسندگان
چکیده
منابع مشابه
Similarities of Model Predictive Control and Constrained Direct Inverse
To reach an acceptable controller strategy and tuning it is important to state what is considered “good”. To do so one can set up a closed-loop specification or formulate an optimal control problem. It is an interesting question, if the two can be equivalent or not. In this article two controller strategies, model predictive control (MPC) and constrained direct inversion (CDI) are compared in c...
متن کاملConstrained Model Predictive Control of Low-power Industrial Gas Turbine
Nowadays, extensive research has been conducted for gas turbine engines control due to growing importance of gas turbine engines for different industries and the need to design a suitable control system for a gas turbine as the heart of the industry. In order to design gas turbine control system, various control variables can be used, but in the meantime, fuel flow inserting into combustion cha...
متن کاملDirect Model-Predictive Control
Due to simplicity and convenience, Model Predictive Control, which consists in optimizing future decisions based on a pessimistic deterministic forecast of the random processes, is one of the main tools for stochastic control. Yet, it suffers from a large computation time, unless the tactical horizon (i.e. the number of future time steps included in the optimization) is strongly reduced, and la...
متن کاملRobust Constrained Model Predictive Control
This thesis extends Model Predictive Control (MPC) for constrained linear systems subject to uncertainty, including persistent disturbances, estimation error and the effects of delay. Previous work has shown that feasibility and constraint satisfaction can be guaranteed by tightening the constraints in a suitable, monotonic sequence. This thesis extends that work in several ways, including more...
متن کاملChance Constrained Model Predictive Control
This work focuses on robustness of model predictive control (MPC) with respect to satisfaction of process output constraints. A method of improving such robustness is presented. The method relies on formulating output constraints as chance constraints using the uncertainty description of the process model. The resulting on-line optimization problem is convex. The proposed approach is illustrate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Intelligent Control and Automation
سال: 2012
ISSN: 2153-0653,2153-0661
DOI: 10.4236/ica.2012.33032