Signed Mahonians

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signed Mahonians

A classical result of MacMahon gives a simple product formula for the generating function of major index over the symmetric group. A similar factorial-type product formula for the generating function of major index together with sign was given by Gessel and Simion. Several extensions are given in this paper, including a recurrence formula, a specialization at roots of unity and type B analogues.

متن کامل

Signed Degree Sequences in Signed Bipartite Graphs

A signed bipartite graph is a bipartite graph in which each edge is assigned a positive or a negative sign. Let G(U, V ) be a signed bipartite graph with U = {u1, u2, · · · , up} and V = {v1, v2, · · · , vq} . Then signed degree of ui is sdeg(ui) = di = d + i − d − i , where 1 ≤ i ≤ p and d+i ( d − i ) is the number of positive(negative) edges incident with ui , and signed degree of vj is sdeg(...

متن کامل

Signed Involutions Avoiding 2-letter Signed Patterns

Let In be the class of all signed involutions in the hyperoctahedral group Bn and let In(T ) be the set of involutions in In which avoid a set T of signed patterns. In this paper, we complete a further case of the program initiated by Simion and Schmidt [6] by enumerating In(T ) for all signed permutations T ⊆ B2.

متن کامل

Signed degree sequences in signed multipartite graphs

A signed k-partite graph (signed multipartite graph) is a k-partite graph in which each edge is assigned a positive or a negative sign. If G(V1, V2, · · · , Vk) is a signed k-partite graph with Vi = {vi1, vi2, · · · , vini}, 1 ≤ i ≤ k, the signed degree of vij is sdeg(vij) = dij = d + ij − d − ij , where 1 ≤ i ≤ k, 1 ≤ j ≤ ni and d + ij(d − ij) is the number of positive (negative) edges inciden...

متن کامل

Signed degree sets in signed bipartite graphs

A signed bipartite graph G(U, V) is a bipartite graph in which each edge is assigned a positive or a negative sign. The signed degree of a vertex x in G(U, V) is the number of positive edges incident with x less the number of negative edges incident with x. The set S of distinct signed degrees of the vertices of G(U, V) is called its signed degree set. In this paper, we prove that every set of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2005

ISSN: 0097-3165

DOI: 10.1016/j.jcta.2004.07.006