SignalP 5.0 improves signal peptide predictions using deep neural networks
نویسندگان
چکیده
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Cystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملMARGIN: Uncovering Deep Neural Networks using Graph Signal Analysis
With the growing complexity of machine learning techniques, understanding the functioning of black-box models is more important than ever. A recently popular strategy towards interpretability is to generate explanations based on examples – called influential samples – that have the largest influence on the model’s observed behavior. However, for such an analysis, we are confronted with a pletho...
متن کاملDeepSig: deep learning improves signal peptide detection in proteins.
Motivation The identification of signal peptides in protein sequences is an important step toward protein localization and function characterization. Results Here, we present DeepSig, an improved approach for signal peptide detection and cleavage-site prediction based on deep learning methods. Comparative benchmarks performed on an updated independent dataset of proteins show that DeepSig is ...
متن کاملChained Predictions Using Convolutional Neural Networks
In this work, we present an adaptation of the sequence-tosequence model for structured vision tasks. In this model, the output variables for a given input are predicted sequentially using neural networks. The prediction for each output variable depends not only on the input but also on the previously predicted output variables. The model is applied to spatial localization tasks and uses convolu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Biotechnology
سال: 2019
ISSN: 1087-0156,1546-1696
DOI: 10.1038/s41587-019-0036-z