Sign patterns of orthogonal matrices and the strong inner product property

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence results for equilibrium problems under strong sign property

This paper concerns equilibrium problems in real metric linear spaces. Considering a modified notion of  upper sign property for bifunctions, we obtain the relationship between the solution sets of the local Minty equilibrium problem and the equilibrium problem, where the technical conditions on $f$ used in the literature are relaxed. The KKM technique is used to generalize and unify some exist...

متن کامل

Patterns of alternating sign matrices

Article history: Received 14 April 2011 Accepted 1 March 2012 Available online xxxx Submitted by N. Shaked-Monderer In admiration, to Avi Berman, Moshe Goldberg, and Raphi Loewy AMS classification: 05B20 05C22 05C50 15B36

متن کامل

Inner Product Spaces and Orthogonal Functions

1 Background We begin by recalling the solution of the vibrating string problem and Sturm-Liouville problems. When we solve the problem of the vibrating string using the technique of separation of variables, the differential equation involving the space variable x, and assuming constant mass density, is y (x) + ω 2 c 2 y(x) = 0, (1.1) which we can write as an eigenvalue problem y (x) + λy(x) = ...

متن کامل

Nilpotent matrices and spectrally arbitrary sign patterns

It is shown that all potentially nilpotent full sign patterns are spectrally arbitrary. A related result for sign patterns all of whose zeros lie on the main diagonal is also given.

متن کامل

Eventually Nonnegative Matrices and their Sign Patterns

A matrix A ∈ Rn×n is eventually nonnegative (respectively, eventually positive) if there exists a positive integer k0 such that for all k ≥ k0, A ≥ 0 (respectively, A > 0). Here inequalities are entrywise and all matrices are real and square. An eigenvalue of A is dominant if its magnitude is equal to the spectral radius of A. A matrix A has the strong Perron-Frobenius property if A has a uniqu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2020

ISSN: 0024-3795

DOI: 10.1016/j.laa.2020.01.033