sidra: a blind algorithm for signal detection in photometric surveys
نویسندگان
چکیده
منابع مشابه
Blind Signal Separation Using an Extended Infomax Algorithm
The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...
متن کاملBlind Signal Separation Using an Extended Infomax Algorithm
The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...
متن کاملSCG - ICA algorithm for Blind Signal Separation
The gradient based algorithms are the most basic independent component analysis (ICA) algorithms, used in Blind signal separation (BSS). Because these algorithms adopt fixed step size, the choice of step size affects the performance and the convergence speed of the algorithm. In this paper, we propose a new algorithm SCG-ICA for blind signal separation. The new algorithm significantly improves ...
متن کاملCosmology with photometric redshift surveys
We explore the utility of future photometric redshift imaging surveys for delineating the large-scale structure of the Universe, and assess the resulting constraints on the cosmological model. We perform two complementary types of analysis: (1) We quantify the statistical confidence and the accuracy with which such surveys will be able to detect and measure characteristic features in the cluste...
متن کاملA New Learning Algorithm for Blind Signal Separation
A new on-line learning algorithm which minimizes a statistical dependency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual information (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number of the sources. The Gram-Charlier expansion instead of the Edgeworth expansion is used in evaluating t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monthly Notices of the Royal Astronomical Society
سال: 2015
ISSN: 0035-8711,1365-2966
DOI: 10.1093/mnras/stv2333