Shortcomings/Limitations of Blockwise Granger Causality and Advances of Blockwise New Causality
نویسندگان
چکیده
منابع مشابه
Granger Causality between Multiple Interdependent Neurobiological Time Series: Blockwise versus Pairwise Methods
Granger causality is becoming an important tool for determining causal relations between neurobiological time series. For multivariate data, there is often the need to examine causal relations between two blocks of time series, where each block could represent a brain region of interest. Two alternative methods are available. In the pairwise method, bivariate autoregressive models are fit to al...
متن کاملCausality, Conditional Exogeneity, and Granger Causality
We relate notions of structural causality and conditional exogeneity as de ned in White and Chalak (2006) (WC) to the concept of Granger causality. We show that given conditional exogeneity, structural non-causality implies retrospective Granger non-causality, an extension of the classical Granger (1969) non-causality condition. We also provide a form of converse to this result and tests for re...
متن کاملGranger causality
Granger causality is a statistical concept of causality that is based on prediction. According to Granger causality, if a signal X1 "Granger-causes" (or "G-causes") a signal X2, then past values of X1 should contain information that helps predict X2 above and beyond the information contained in past values of X2 alone. Its mathematical formulation is based on linear regression modeling of stoch...
متن کاملGranger Causality’s Shortcomings and New Causality Measure
Granger causality (GC) is one of the most popular measures to reveal causality influence of time series and has been widely applied in economics and neuroscience due to its simplicity and easy implementation. In this paper, we show that GC in time domain cannot correctly determine how strongly one time series influences the other when there is directional causality between two time series, that...
متن کاملa generalization of strong causality
در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems
سال: 2016
ISSN: 2162-237X,2162-2388
DOI: 10.1109/tnnls.2015.2497681