Short-Term Load Forecasting in a microgrid environment: Investigating the series-specific and cross-learning forecasting methods

نویسندگان

چکیده

Abstract A reliable and accurate load forecasting method is key to successful energy management of smart grids. Due the non-linear relations in data generating process availability issues, remains a challenging task. Here, we investigate application feed forward artificial neural networks, recurrent networks crosslearning methods for day-ahead three days-ahead forecasting. The effectiveness proposed evaluated against statistical benchmark, using multiple accuracy metrics. test sets are high resolution multi-seasonal time series electricity demand buildings Belgium, Canada UK from private measurements open access sources. Both FFNN RNN show competitive results on benchmarking datasets. Best varies depending metric selected. use cross-learning fitting global model has an improvement final accuracy.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short-term load forecasting in market environment

In the paper the problem of the application of neural predictors for Short-Term Load Forecasting (STLF) for energy transactions planning in utility is presented. Several aspects of this topic are discussed, including identification of different load patterns for holidays and customer profiles, estimation of prediction intervals and optimal size of the order, according to the financial condition...

متن کامل

Short - Term Load Forecasting

This paper presents a novel hybrid method for short-term load forecasting. The system comprises of two artificial neural networks (ANN), assembled in a hierarchical order. The first ANN is a multilayer perceptron (MLP) which functions as integrated load predictor (ILP) for the forecasting day. The output of the ILP is then fed to another, more complex MLP, which acts as an hourly load predictor...

متن کامل

Short-term Load Forecasting Method

Based on Wavelet and Reconstructed Phase Space Zunxiong Liu, Zhijun Kuang, Deyun Zhang 1.Dept. of Information and Communication Eng, Xi’an Jiaotong University. Xi’an, Shanxi, China. 2.Dept. of Information Eng, East China Jiaotong University. Nanchang, Jiangxi, China Abstract: This paper proposed wavelet combination method for short-term forecasting, which makes merit of wavelet decomposition an...

متن کامل

A Deep Learning Framework for Short-term Power Load Forecasting

The scheduling and operation of power system becomes prominently complex and uncertain, especially with the penetration of distributed power. Load forecasting matters to the effective operation of power system. This paper proposes a novel deep learning framework to forecast the short-term grid load. First, the load data is processed by Box-Cox transformation, and two parameters (electricity pri...

متن کامل

Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks

Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2021

ISSN: ['1742-6588', '1742-6596']

DOI: https://doi.org/10.1088/1742-6596/2042/1/012035