Short containers in Cayley graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short containers in Cayley graphs

The star diameter of a graph measures the minimum distance from any source node to several other target nodes in the graph. For a class of Cayley graphs from abelian groups, a good upper bound for their star diameters is given in terms of the usual diameters and the orders of elements in the generating subsets. This bound is tight for several classes of graphs including hypercubes and directed ...

متن کامل

Short containers in Cayley graphs by

The star diameter of a graph measures the minimum distance from any source node to several other target nodes in the graph. For a class of Cayley graphs from abelian groups, a good upper bound for their star diameters is given in terms of the usual diameters and the orders of elements in the generating subsets. This bound is tight for several classes of graphs including hypercubes and directed ...

متن کامل

Cayley graphs - Cayley nets

It is, however, not clear how to choose the generators to produce special graphs. We know many topologies and their generators, but many more may be constructed in the future, having better properties (in terms of diameter, nodal degree and connectivity) than for instance the hypercube. I will present several graphs which connect rings using the generator g 1 and some additional generators.

متن کامل

Vector Space semi-Cayley Graphs

The original aim of this paper is to construct a graph associated to a vector space. By inspiration of the classical definition for the Cayley graph related to a group we define Cayley graph of a vector space. The vector space Cayley graph ${rm Cay(mathcal{V},S)}$ is a graph with the vertex set the whole vectors of the vector space $mathcal{V}$ and two vectors $v_1,v_2$ join by an edge whenever...

متن کامل

On two-dimensional Cayley graphs

A subset W of the vertices of a graph G is a resolving set for G when for each pair of distinct vertices u,v in V (G) there exists w in W such that d(u,w)≠d(v,w). The cardinality of a minimum resolving set for G is the metric dimension of G. This concept has applications in many diverse areas including network discovery, robot navigation, image processing, combinatorial search and optimization....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2009

ISSN: 0166-218X

DOI: 10.1016/j.dam.2008.11.005