Short- and long-term forecasting of electricity prices using embedding of calendar information in neural networks
نویسندگان
چکیده
Electricity prices strongly depend on seasonality of different time scales, therefore any forecasting electricity has to account for it. Neural networks have proven successful in short-term price-forecasting, but complicated architectures like LSTM are used integrate the seasonal behavior. This paper shows that simple neural network DNNs with an embedding layer information can generate a competitive forecast. The embedding-based processing calendar additionally opens up new applications trading, such as generation price forward curves. Besides theoretical foundation, this also provides empirical multi-year study German market both and derives economical insights from layer. price-forecasting mean absolute error proposed is better than time-series benchmark models even slightly our best model sophisticated hyperparameter optimization. results aresupported by statistical analysis using Friedman Holm’s tests. • embeddings Generation hourly curves Case-study
منابع مشابه
Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملthe effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus
از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...
15 صفحه اولAustralia's long-term electricity demand forecasting using deep neural networks
Accurate prediction of long-term electricity demand has a significant role in demand side management and electricity network planning and operation. Demand over-estimation results in over-investment in network assets, driving up the electricity prices, while demand underestimation may lead to under-investment resulting in unreliable and insecure electricity. In this manuscript, we apply deep ne...
متن کاملApplication of an Improved Neural Network Using Cuckoo Search Algorithm in Short-Term Electricity Price Forecasting under Competitive Power Markets
Accurate and effective electricity price forecasting is critical to market participants in order to make an appropriate risk management in competitive electricity markets. Market participants rely on price forecasts to decide on their bidding strategies, allocate assets and plan facility investments. However, due to its time variant behavior and non-linear and non-stationary nature, electricity...
متن کاملShort-term and Medium-term Gas Demand Load Forecasting by Neural Networks
The ability of Artificial Neural Network (ANN) for estimating the natural gas demand load for the next day and month of the populated cities has shown to be a real concern. As the most applicable network, the ANN with multi-layer back propagation perceptrons is used to approximate functions. Throughout the current work, the daily effective temperature is determined, and then the weather data w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Commodity Markets
سال: 2022
ISSN: ['2405-8513', '2405-8505']
DOI: https://doi.org/10.1016/j.jcomm.2022.100246