Shimura curves of genus at most two

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shimura curves of genus at most two

We enumerate all Shimura curves XD 0 (N) of genus at most two: there are exactly 858 such curves, up to equivalence. The elliptic modular curve X0(N) is the quotient of the completed upper halfplane H∗ by the congruence subgroup Γ0(N) of matrices in SL2(Z) that are upper triangular modulo N ∈ Z>0. The curve X0(N) forms a coarse moduli space for (generalized) elliptic curves equipped with a cycl...

متن کامل

Equations of Shimura Curves of Genus Two

LetBD be the indefinite quaternion algebra overQ of reduced discriminantD=p1· · · · ·p2r for pairwise different prime numbers pi and let XD/Q be the Shimura curve attached to BD. As it was shown by Shimura [23], XD is the coarse moduli space of abelian surfaces with quaternionic multiplication by BD. Let W = {ωm : m | D} ⊆ Aut Q(XD) be the group of Atkin-Lehner involutions. For any m | D, we wi...

متن کامل

Equations of Shimura Curves of Genus

We present explicit models for Shimura curves X D and Atkin-Lehner quotients X D /ωm of them of genus 2. We show that several equations conjectured by Kurihara are correct and compute for them the kernel of Ribet's isogeny J 0 (D) new → J D between the new part of the Jacobian of the modular curve X 0 (D) and the Jacobian of X D .

متن کامل

Non-elliptic Shimura Curves of Genus One

We present explicit models for non-elliptic genus one Shimura curves X0(D, N) with Γ0(N)-level structure arising from an indefinite quaternion algebra of reduced discriminant D, and Atkin-Lehner quotients of them. In addition, we discuss and extend Jordan’s work [10, Ch. III] on points with complex multiplication on Shimura curves.

متن کامل

The Kernel of Ribet’s Isogeny for Genus Three Shimura Curves

There are exactly nine reduced discriminants D of indefinite quaternion algebras over Q for which the Shimura curve XD attached to D has genus 3. We present equations for these nine curves and, moreover, for each D we determine a subgroup c(D) of cuspidal divisors of degree zero of Jac(X0(D)) such that the abelian variety Jac(X0(D))/c(D) is the jacobian of the curve XD.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2008

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-08-02163-7