Sharps Bounds for Power Mean in Terms of Contraharmonic Mean

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Bounds for Seiffert Mean in Terms of Contraharmonic Mean

and Applied Analysis 3 2. Proof of Theorem 1.1 Proof of Theorem 1.1. Let λ 1 √ 4/π − 1 /2 and μ 3 √3 /6. We first proof that the inequalities T a, b > C λa 1 − λ b, λb 1 − λ a , 2.1 T a, b < C ( μa ( 1 − μb, μb 1 − μa 2.2 hold for all a, b > 0 with a/ b. From 1.1 and 1.2 we clearly see that both T a, b and C a, b are symmetric and homogenous of degree 1. Without loss of generality, we assume th...

متن کامل

Bounds for the Arithmetic Mean in Terms of the Neuman, Harmonic and Contraharmonic Means

SB (a, b) = { √ b2−a2 cos−1(a/b) , a < b , √ a2−b2 cosh−1(a/b) , a > b . In this paper, we find the greatest values α1, α2, α3 and α4, and the least values β1, β2, β3 and β4 such that the double inequalities α1SAH(a, b) + (1 − α1)C(a, b) < A(a, b) < β1SAH(a, b) + (1 − β1)C(a, b), α2SHA(a, b) + (1 − α2)C(a, b) < A(a, b) < β2SHA(a, b) + (1 − β2)C(a, b), α3SCA(a, b) + (1 − α3)H(a, b) < A(a, b) < β...

متن کامل

Optimal Bounds for Toader Mean in Terms of Arithmetic and Contraharmonic Means

We find the greatest value α1 and α2 , and the least values β1 and β2 , such that the double inequalities α1C(a,b)+(1−α1)A(a,b) < T (a,b) < β1C(a,b)+(1−β1)A(a,b) and α2/A(a,b)+(1−α2)/C(a,b) < 1/T (a,b) < β2/A(a,b)+(1−β2)/C(a,b) hold for all a,b > 0 with a = b . As applications, we get new bounds for the complete elliptic integral of the second kind. Here, C(a,b) = (a2 +b2)/(a+b) , A(a,b) = (a+b...

متن کامل

A Double Inequality for the Combination of Toader Mean and the Arithmetic Mean in Terms of the Contraharmonic Mean

We find the greatest value λ and the least value μ such that the double inequality C(λa + (1 − λ)b, λb+ (1 − λ)a) < αA(a, b) + (1 − α)T (a, b) < C(μa + (1 − μ)b, μb+ (1− μ)a) holds for all α ∈ (0, 1) and a, b > 0 with a 6= b, where C(a, b), A(a, b), and T (a, b) denote respectively the contraharmonic, arithmetic, and Toader means of two positive numbers a and b.

متن کامل

Sharp Bounds for Seiffert Mean in Terms of Weighted Power Means of Arithmetic Mean and Geometric Mean

For a,b > 0 with a = b , let P = (a− b)/(4arctana/b−π) , A = (a+ b)/2 , G = √ ab denote the Seiffert mean, arithmetic mean, geometric mean of a and b , respectively. In this paper, we present new sharp bounds for Seiffert P in terms of weighted power means of arithmetic mean A and geometric mean G : ( 2 3 A p1 + 3 G p1 )1/p1 < P < ( 2 3 A p2 + 3 G p2 )1/p2 , where p1 = 4/5 and p2 = logπ/2 (3/2)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics and Physics

سال: 2020

ISSN: 2327-4352,2327-4379

DOI: 10.4236/jamp.2020.87093