Sharper and finer energy decay rate for an elastic string with localized Kelvin-Voigt damping

نویسندگان

چکیده

<p style='text-indent:20px;'>This paper is on the asymptotic behavior of elastic string equation with localized Kelvin-Voigt damping</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ u_{tt}(x, t)-[u_{x}(x, t)+b(x)u_{x, t}(x, t)]_{x} = 0, \; x\in(-1, 1), t>0, $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ b(x) 0 $\end{document}</tex-math></inline-formula> id="M2">\begin{document}$ x\in (-1, 0] $\end{document}</tex-math></inline-formula>, and id="M3">\begin{document}$ a(x)>0 id="M4">\begin{document}$ (0, 1) $\end{document}</tex-math></inline-formula>. It known that Geometric Optics Condition for exponential stability does not apply to damping. Under assumption id="M5">\begin{document}$ a'(x) has a singularity at id="M6">\begin{document}$ x we investigate decay rate solution which depends order singularity.</p><p style='text-indent:20px;'>When id="M7">\begin{document}$ a(x) behaves like id="M8">\begin{document}$ x^{\alpha}(-\log x)^{-\beta} near id="M9">\begin{document}$ id="M10">\begin{document}$ 0\le{\alpha}<1, \;0\le\beta or id="M11">\begin{document}$ 0<{\alpha}<1, \;\beta<0 show system can achieve mixed polynomial-logarithmic rate.</p><p style='text-indent:20px;'>As byproduct, when id="M12">\begin{document}$ \beta obtain id="M13">\begin{document}$ t^{-\frac{ 3-\alpha-\varepsilon}{2(1-{\alpha})}} arbitrarily small id="M14">\begin{document}$ \varepsilon>0 improves id="M15">\begin{document}$ t^{-\frac{1}{1-{\alpha}}} obtained in [<xref ref-type="bibr" rid="b14">14</xref>]. The new again consistent limit case id="M16">\begin{document}$ \alpha\to 1^- This step toward goal obtaining optimal eventually.</p>

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of a Nonlinear Axially Moving String with the Kelvin-Voigt Damping

In this paper, a nonlinear axially moving string with the Kelvin-Voigt damping is considered. It is proved that the string is stable, i.e., its transversal displacement converges to zero when the axial speed of the string is less than a certain critical value. The proof is established by showing that a Lyapunov function corresponding to the string decays to zero exponentially. It is also shown ...

متن کامل

Transmission Problems in (Thermo)Viscoelasticity with Kelvin-Voigt Damping: Nonexponential, Strong, and Polynomial Stability

We investigate transmission problems between a (thermo-)viscoelastic system with Kelvin-Voigt damping, and a purely elastic system. It is shown that neither the elastic damping by Kelvin-Voigt mechanisms nor the dissipative effect of the temperature in one material can assure the exponential stability of the total system when it is coupled through transmission to a purely elastic system. The ap...

متن کامل

The Lack of Exponential Stability in Certain Transmission Problems with Localized Kelvin-Voigt Dissipation

Abstract. In this paper we consider the transmission problem of a material composed of three components; one of them is a Kelvin–Voigt viscoelastic material, the second is an elastic material (no dissipation), and the third is an elastic material inserted with a frictional damping mechanism. The main result of this paper is that the rate of decay will depend on the position of each component. W...

متن کامل

An Exact Solution for Kelvin-Voigt Model Classic Coupled Thermo Viscoelasticity in Spherical Coordinates

In this paper, the classic Kelvin-Voigt model coupled thermo-viscoelasticity model of hollow and solid spheres under radial symmetric loading condition is considered. A full analytical method is used and an exact unique solution of the classic coupled equations is presented. The thermal and mechanical boundary conditions, the body force, and the heat source are considered in the most general fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems - Series S

سال: 2022

ISSN: ['1937-1632', '1937-1179']

DOI: https://doi.org/10.3934/dcdss.2022031