Sharp upper bounds on the Clar number of fullerene graphs
نویسندگان
چکیده
منابع مشابه
Extremal fullerene graphs with the maximum Clar number
A fullerene graph is a cubic 3-connected plane graph with (exactly 12) pentagonal faces and hexagonal faces. Let Fn be a fullerene graph with n vertices. A set H of mutually disjoint hexagons of Fn is a sextet pattern if Fn has a perfect matching which alternates on and off each hexagon in H. The maximum cardinality of sextet patterns of Fn is the Clar number of Fn. It was shown that the Clar n...
متن کاملSome Sharp Upper Bounds on the Spectral Radius of Graphs
In this paper, we first give a relation between the adjacency spectral radius and the Q-spectral radius of a graph. Then using this result, we further give some new sharp upper bounds on the adjacency spectral radius of a graph in terms of degrees and the average 2-degrees of vertices. Some known results are also obtained.
متن کاملOn the Clar Number of Benzenoid Graphs
A Clar set of a benzenoid graph B is a maximum set of independent alternating hexagons over all perfect matchings of B. The Clar number of B, denoted by Cl(B), is the number of hexagons in a Clar set for B. In this paper, we first prove some results on the independence number of subcubic trees to study the Clar number of catacondensed benzenoid graphs. As the main result of the paper we prove a...
متن کاملSharp Upper Bounds on the Minimum Number of Components of 2-factors in Claw-free Graphs
Let G be a claw-free graph with order n and minimum degree δ. We improve results of Faudree et al. and Gould & Jacobson, and solve two open problems by proving the following two results. If δ = 4, then G has a 2-factor with at most (5n− 14)/18 components, unless G belongs to a finite class of exceptional graphs. If δ ≥ 5, then G has a 2-factor with at most (n− 3)/(δ − 1) components, unless G is...
متن کاملSome sharp bounds on the negative decision number of graphs
Let G = (V,E) be a graph. A function f : V → {−1, 1} is called a bad function of G if ∑ u∈NG(v) f(u) ≤ 1 for all v ∈ V , where NG(v) denotes the set of neighbors of v in G. The negative decision number of G, introduced in [12], is the maximum value of ∑ v∈V f(v) taken over all bad functions of G. In this paper, we present sharp upper bounds on the negative decision number of a graph in terms of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discussiones Mathematicae Graph Theory
سال: 2018
ISSN: 1234-3099,2083-5892
DOI: 10.7151/dmgt.2013