Sharp upper and lower bounds of the attractor dimension for 3D damped Euler–Bardina equations
نویسندگان
چکیده
The dependence of the fractal dimension global attractors for damped 3D Euler–Bardina equations on regularization parameter ? > 0 and Ekman damping coefficient ? is studied. We present explicit upper bounds this case whole space, periodic boundary conditions, bounded domain with Dirichlet conditions. sharpness these estimates when ? (which corresponds in limit to classical Euler equations) demonstrated Kolmogorov flows a torus. • Global attractors. Explicit various Optimal 2D
منابع مشابه
Upper and lower bounds for numerical radii of block shifts
For an n-by-n complex matrix A in a block form with the (possibly) nonzero blocks only on the diagonal above the main one, we consider two other matrices whose nonzero entries are along the diagonal above the main one and consist of the norms or minimum moduli of the diagonal blocks of A. In this paper, we obtain two inequalities relating the numeical radii of these matrices and also determine ...
متن کاملSharp Lower Bounds for the Dimension of the Global Attractor of the Sabra Shell Model of Turbulence
In this work we derive lower bounds for the Hausdorff and fractal dimensions of the global attractor of the Sabra shell model of turbulence in different regimes of parameters. We show that for a particular choice of the forcing term and for sufficiently small viscosity term ν, the Sabra shell model has a global attractor of large Hausdorff and fractal dimensions proportional to logν−1 for all v...
متن کاملUpper bounds for noetherian dimension of all injective modules with Krull dimension
In this paper we give an upper bound for Noetherian dimension of all injective modules with Krull dimension on arbitrary rings. In particular, we also give an upper bound for Noetherian dimension of all Artinian modules on Noetherian duo rings.
متن کاملUpper and lower bounds of symmetric division deg index
Symmetric Division Deg index is one of the 148 discrete Adriatic indices that showed good predictive properties on the testing sets provided by International Academy of Mathematical Chemistry. Symmetric Division Deg index is defined by $$ SDD(G) = sumE left( frac{min{d_u,d_v}}{max{d_u,d_v}} + frac{max{d_u,d_v}}{min{d_u,d_v}} right), $$ where $d_i$ is the degree of vertex $i$ in graph $G$. In th...
متن کاملUpper and Lower Bounds of Solutions for Fractional Integral Equations
In this paper we consider the integral equation of fractional order in sense of Riemann-Liouville operator u(t) = a(t)I[b(t)u(t)] + f(t) with m ≥ 1, t ∈ [0, T ], T < ∞ and 0 < α < 1. We discuss the existence, uniqueness, maximal, minimal and the upper and lower bounds of the solutions. Also we illustrate our results with examples. Full text
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physica D: Nonlinear Phenomena
سال: 2022
ISSN: ['1872-8022', '0167-2789']
DOI: https://doi.org/10.1016/j.physd.2022.133156