Sharp power mean bounds for the second Neuman mean
نویسندگان
چکیده
منابع مشابه
Sharp bounds by the power mean for the generalized Heronian mean
* Correspondence: [email protected] Department of Mathematics, Huzhou Teachers College, Huzhou 313000, China Full list of author information is available at the end of the article Abstract In this article, we answer the question: For p, ω Î R with ω >0 and p(ω 2) ≠ 0, what are the greatest value r1 = r1(p, ω) and the least value r2 = r2(p, ω) such that the double inequality Mr1 (a, b) ...
متن کاملSharp Generalized Seiffert Mean Bounds for Toader Mean
and Applied Analysis 3 2. Lemmas In order to establish ourmain result, we need several formulas and lemmas, whichwe present in this section. The following formulas were presented in 10, Appendix E, pages 474-475 : Let r ∈ 0, 1 , then
متن کاملSharp Bounds for Seiffert Mean in Terms of Contraharmonic Mean
and Applied Analysis 3 2. Proof of Theorem 1.1 Proof of Theorem 1.1. Let λ 1 √ 4/π − 1 /2 and μ 3 √3 /6. We first proof that the inequalities T a, b > C λa 1 − λ b, λb 1 − λ a , 2.1 T a, b < C ( μa ( 1 − μb, μb 1 − μa 2.2 hold for all a, b > 0 with a/ b. From 1.1 and 1.2 we clearly see that both T a, b and C a, b are symmetric and homogenous of degree 1. Without loss of generality, we assume th...
متن کاملSharp Bounds for Seiffert Mean in Terms of Weighted Power Means of Arithmetic Mean and Geometric Mean
For a,b > 0 with a = b , let P = (a− b)/(4arctana/b−π) , A = (a+ b)/2 , G = √ ab denote the Seiffert mean, arithmetic mean, geometric mean of a and b , respectively. In this paper, we present new sharp bounds for Seiffert P in terms of weighted power means of arithmetic mean A and geometric mean G : ( 2 3 A p1 + 3 G p1 )1/p1 < P < ( 2 3 A p2 + 3 G p2 )1/p2 , where p1 = 4/5 and p2 = logπ/2 (3/2)...
متن کاملBounds of the Neuman-Sándor Mean Using Power and Identric Means
and Applied Analysis 3 It is the aim of this paper to find the best possible lower power mean bound for the Neuman-Sándor mean M(a, b) and to present the sharp constants α and β such that the double inequality α < M(a, b) I (a, b) < β (17) holds for all a, b > 0 with a ̸ = b. 2. Main Results Theorem 1. p0 = (log 2)/ log [2 log(1 + √2)] = 1.224 . . . is the greatest value such that the inequality...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Miskolc Mathematical Notes
سال: 2017
ISSN: 1787-2405,1787-2413
DOI: 10.18514/mmn.2017.2159