Sharp bounds of Fekete-Szegő functional for quasi-subordination class
نویسندگان
چکیده
منابع مشابه
Fekete-Szeg"o problems for analytic functions in the space of logistic sigmoid functions based on quasi-subordination
In this paper, we define new subclasses ${S}^{*}_{q}(alpha,Phi),$ ${M}_{q}(alpha,Phi)$ and ${L}_{q}(alpha,Phi)$ of analytic functions in the space of logistic sigmoid functions based on quasi--subordination and determine the initial coefficient estimates $|a_2|$ and $|a_3|$ and also determine the relevant connection to the classical Fekete--Szeg"o inequalities. Further, we discuss the improved ...
متن کاملThe Fekete – Szegő theorem with splitting conditions : Part
A classical theorem of Fekete and Szegő [4] says that if E is a compact set in the complex plane, stable under complex conjugation and having logarithmic capacity γ(E) ≥ 1, then every neighborhood of E contains infinitely many conjugate sets of algebraic integers. Raphael Robinson [5] refined this, showing that if E is contained in the real line, then every neighborhood of E contains infinitely...
متن کاملFekete-Szegö coefficient functional for transforms of universally prestarlike functions
Universally prestarlike functions of order $alphaleq 1$ in the slit domain $Lambda=mathbb{C}setminus [1,infty)$ have been recently introduced by S. Ruscheweyh.This notion generalizes the corresponding one for functions in the unit disk $Delta$ (and other circular domains in $mathbb{C}$). In this paper, we obtain the Fekete-Szegö coefficient functional for transforms of such f...
متن کاملFekete-szegö Inequalities for Certain Subclasses of Starlike and Convex Functions of Complex Order Associated with Quasi-subordination
In this paper, we find Fekete-Szegö bounds for a generalized class M q (γ, φ). Also, we discuss some remarkable results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Universitatis Sapientiae, Mathematica
سال: 2019
ISSN: 2066-7752
DOI: 10.2478/ausm-2019-0008