Sharp Bounds for Toader Mean in terms of Arithmetic and Second Contraharmonic Means
نویسندگان
چکیده
منابع مشابه
Optimal Bounds for Toader Mean in Terms of Arithmetic and Contraharmonic Means
We find the greatest value α1 and α2 , and the least values β1 and β2 , such that the double inequalities α1C(a,b)+(1−α1)A(a,b) < T (a,b) < β1C(a,b)+(1−β1)A(a,b) and α2/A(a,b)+(1−α2)/C(a,b) < 1/T (a,b) < β2/A(a,b)+(1−β2)/C(a,b) hold for all a,b > 0 with a = b . As applications, we get new bounds for the complete elliptic integral of the second kind. Here, C(a,b) = (a2 +b2)/(a+b) , A(a,b) = (a+b...
متن کاملSharp Bounds for Seiffert Mean in Terms of Contraharmonic Mean
and Applied Analysis 3 2. Proof of Theorem 1.1 Proof of Theorem 1.1. Let λ 1 √ 4/π − 1 /2 and μ 3 √3 /6. We first proof that the inequalities T a, b > C λa 1 − λ b, λb 1 − λ a , 2.1 T a, b < C ( μa ( 1 − μb, μb 1 − μa 2.2 hold for all a, b > 0 with a/ b. From 1.1 and 1.2 we clearly see that both T a, b and C a, b are symmetric and homogenous of degree 1. Without loss of generality, we assume th...
متن کاملBounds for the Arithmetic Mean in Terms of the Neuman, Harmonic and Contraharmonic Means
SB (a, b) = { √ b2−a2 cos−1(a/b) , a < b , √ a2−b2 cosh−1(a/b) , a > b . In this paper, we find the greatest values α1, α2, α3 and α4, and the least values β1, β2, β3 and β4 such that the double inequalities α1SAH(a, b) + (1 − α1)C(a, b) < A(a, b) < β1SAH(a, b) + (1 − β1)C(a, b), α2SHA(a, b) + (1 − α2)C(a, b) < A(a, b) < β2SHA(a, b) + (1 − β2)C(a, b), α3SCA(a, b) + (1 − α3)H(a, b) < A(a, b) < β...
متن کاملOptimal bounds for arithmetic-geometric and Toader means in terms of generalized logarithmic mean
In this paper, we find the greatest values [Formula: see text] and the smallest values [Formula: see text] such that the double inequalities [Formula: see text] and [Formula: see text] hold for all [Formula: see text] with [Formula: see text], where [Formula: see text], [Formula: see text] and [Formula: see text] are the arithmetic-geometric, Toader and generalized logarithmic means of two posi...
متن کاملBounds for the Combinations of Neuman-Sándor, Arithmetic, and Second Seiffert Means in terms of Contraharmonic Mean
and Applied Analysis 3 If f(x)/g(x) is strictly monotone, then the monotonicity in the conclusion is also strict. Lemma 2. Let u, α ∈ (0, 1) and f u,α (x) = ux 2 − (1 − α) ( x arctanx − 1) . (12) Then f u,α (x) > 0 for all x ∈ (0, 1) if and only if u ≥ (1 − α)/3 andf u,α (x) < 0 for allx ∈ (0, 1) if and only if u ≤ (1−α)(4/π− 1). Proof. From (12), one has f u,α (0 + ) = 0, (13) f u,α (1 − ) = u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Function Spaces
سال: 2015
ISSN: 2314-8896,2314-8888
DOI: 10.1155/2015/452823