Sharp Bounds for the Largest Eigenvalue

نویسندگان

چکیده

We generalize the classical sharp bounds for largest eigenvalue of normalized Laplace operator, $\frac{N}{N-1}\leq \lambda_N\leq 2$, to case chemical hypergraphs.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds for the Largest Laplacian Eigenvalue of Weighted Graphs

Let G = (V, E) be simple graphs, as graphs which have no loops or parallel edges such that V is a finite set of vertices and E is a set of edges. A weighted graph is a graph each edge of which has been assigned to a square matrix called the weight of the edge. All the weightmatrices are assumed to be of same order and to be positive matrix. In this paper, by “weighted graph” we mean “a weighted...

متن کامل

Sharp Eigenvalue Bounds and Minimal Surfaces in the Ball

We prove existence and regularity of metrics on a surface with boundary which maximize σ1L where σ1 is the first nonzero Steklov eigenvalue and L the boundary length. We show that such metrics arise as the induced metrics on free boundary minimal surfaces in the unit ball Bn for some n. In the case of the annulus we prove that the unique solution to this problem is the induced metric on the cri...

متن کامل

Sharp Bounds on the PI Spectral Radius

In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.

متن کامل

On lower bounds for the largest eigenvalue of a symmetric matrix

We consider lower bounds for the largest eigenvalue of a symmetric matrix. In particular we extend a recent approach by Piet Van Mieghem. © 2008 Elsevier Inc. All rights reserved. AMS classification: Primary 15A42; Secondary 30B10

متن کامل

A sharp upper bound on the largest Laplacian eigenvalue of weighted graphs

We consider weighted graphs, where the edge weights are positive definite matrices. The Laplacian of the graph is defined in the usual way. We obtain an upper bound on the largest eigenvalue of the Laplacian and characterize graphs for which the bound is attained. The classical bound of Anderson and Morley, for the largest eigenvalue of the Laplacian of an unweighted graph follows as a special ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Notes

سال: 2021

ISSN: ['1573-8876', '0001-4346', '1067-9073']

DOI: https://doi.org/10.1134/s0001434621010120