Shape Optimization of a Weighted Two-Phase Dirichlet Eigenvalue
نویسندگان
چکیده
This article is concerned with a spectral optimization problem: in smooth bounded domain $${\Omega }$$ , for function m and nonnegative parameter $$\alpha $$ consider the first eigenvalue $$\lambda _\alpha (m)$$ of operator $${\mathcal {L}}_m$$ given by {L}}_m(u)= -{\text {div}} \left( 1+\alpha m)\nabla u\right) -mu$$ . Assuming uniform pointwise integral bounds on m, we investigate issue minimizing respect to m. Such problem related so-called “two phase extremal problem” arises naturally, instance population dynamics where it survival ability species domain. We prove that unless ball, this has no “regular” solution. then provide careful analysis case ball by: (1) characterizing solution among all radially symmetric resources distributions, help new method involving homogenized version problem; (2) proving more general setting stability result centered distribution monotonicity principle second order shape derivatives which significantly simplifies analysis.
منابع مشابه
synthesis of platinum nanostructures in two phase system
چکیده پلاتین، فلزی نجیب، پایدار و گران قیمت با خاصیت کاتالیزوری زیاد است که کاربرد های صنعتی فراوانی دارد. کمپلکس های پلاتین(ii) به عنوان دارو های ضد سرطان شناخته شدند و در شیمی درمانی بیماران سرطانی کاربرد دارند. خاصیت کاتالیزوری و عملکرد گزینشی پلاتین مستقیماً به اندازه و- شکل ماده ی پلاتینی بستگی دارد. بعضی از نانو ذرات فلزی در سطح مشترک مایع- مایع سنتز شده اند، اما نانو ساختار های پلاتین ب...
Worst-case shape optimization for the Dirichlet energy
We consider the optimization problem for a shape cost functional F (Ω, f) which depends on a domain Ω varying in a suitable admissible class and on a “right-hand side” f . More precisely, the cost functional F is given by an integral which involves the solution u of an elliptic PDE in Ω with right-hand side f ; the boundary conditions considered are of the Dirichlet type. When the function f is...
متن کاملThe first biharmonic Steklov eigenvalue: positivity preserving and shape optimization
We consider the Steklov problem for the linear biharmonic equation. We survey existing results for the positivity preserving property to hold. These are connected with the first Steklov eigenvalue. We address the problem of minimizing this eigenvalue among suitable classes of domains. We prove the existence of an optimal convex domain of fixed measure. Mathematics Subject Classification (2000)....
متن کاملShape Optimization for Dirichlet Problems: Relaxed Solutions and Optimality Conditions
We study a problem of shape optimal design for an elliptic equation with Dirichlet boundary condition. We introduce a relaxed formulation of the problem which always admits a solution, and we find necessary conditions for optimality both for the relaxed and the original problem. Let Q be a bounded open subset of R(n > 2), let ƒ e L (Q), and let g: Q, x R —> R be a Carathéodory function (i.e. g(...
متن کاملEfficient Rearrangement Algorithms for Shape Optimization on Elliptic Eigenvalue Problems
In this paper, several efficient rearrangement algorithms are proposed to find the optimal shape and topology for elliptic eigenvalue problems with inhomogeneous structures. The goal is to solve minimization and maximization of the k−th eigenvalue and maximization of spectrum ratios of the second order elliptic differential operator. Physically, these problems are motivated by the frequency con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archive for Rational Mechanics and Analysis
سال: 2021
ISSN: ['0003-9527', '1432-0673']
DOI: https://doi.org/10.1007/s00205-021-01726-4