Shadowing property for inverse limit spaces
نویسندگان
چکیده
منابع مشابه
Limit Shadowing Property
In this paper pseudoorbits of discrete dynamical systems are considered such that the one{step errors of the orbits tend to zero with increasing indices. First it is shown that close to hyperbolic sets such orbits are shadowed by true trajectories of the system with shadowing errors also tending to zero. Then the rates of convergence are studied via considering pseudoorbits such that the error ...
متن کاملOn Periodic Shadowing Property
In this paper, some properties of the periodic shadowing are presented. It is shown that a homeomorphism has the periodic shadowing property if and only if so does every lift of it to the universal covering space. Also, it is proved that continuous mappings on a compact metric space with the periodic shadowing and the average shadowing property also have the shadowing property and then are chao...
متن کاملExpansive Homeomorphisms with the Shadowing Property on Zero Dimensional Spaces
Let X = {a}∪ {ai | i ∈ N} be a subspace of Euclidean space E such that limi→∞ ai = a and ai 6= aj for i 6= j. Then it is well known that the space X has no expansive homeomorphisms with the shadowing property. In this paper we show that the set of all expansive homeomorphisms with the shadowing property on the space Y is dense in the space H(Y ) of all homeomorphisms on Y , where Y = {a, b} ∪ {...
متن کاملLIMIT AVERAGE SHADOWING AND DOMINATED SPLITTING
In this paper the notion of limit average shadowing property is introduced for diffeomorphisms on a compact smooth manifold M and a class of diffeomorphisms is given which has the limit average shadowing property, but does not have the shadowing property. Moreover, we prove that for a closed f-invariant set Lambda of a diffeomorphism f, if Lambda is C1-stably limit average shadowing and t...
متن کاملUniform Measures on Inverse Limit Spaces
Motivated by problems from dynamic economic models, we consider the problem of defining a uniform measure on inverse limit spaces. Let f : X → X where X is a compact metric space and f is continuous, onto and piecewise one-to-one and Y := lim ←− (X, f). Then starting with a measure μ1 on the Borel sets B(X), we recursively construct a sequence of probability measures {μn}n=1 on B(X) satisfying ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1992
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1992-1097338-x