Shadow Magnetic Hamiltonian Monte Carlo

نویسندگان

چکیده

Incorporating partial momentum refreshment into Magnetic Hamiltonian Monte Carlo (MHMC) to create with (PMHMC) has been shown improve the sampling performance of MHMC significantly. At same time, from an integrator-dependent shadow or modified target density utilised boost acceptance rates (HMC), which leads more efficient as integrator is better conserved by than true Hamiltonian. Sampling associated numerical used in yet be explored literature. This work aims address this gap literature combining benefits non-canonical dynamics those achieved targeting We first determine and use construct a novel method, we refer Shadow (SMHMC), that behaviour when compared while leaving distribution invariant. The new SMHMC method PMHMC across various posterior distributions, including datasets modeled using Bayesian Neural Networks Logistic Regression models.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) exploits Hamiltonian dynamics to construct efficient proposals for Markov chain Monte Carlo (MCMC). In this paper, we present a generalization of HMC which exploits non-canonical Hamiltonian dynamics. We refer to this algorithm as magnetic HMC, since in 3 dimensions a subset of the dynamics map onto the mechanics of a charged particle coupled to a magnetic field. W...

متن کامل

A separable shadow Hamiltonian hybrid Monte Carlo method.

Hybrid Monte Carlo (HMC) is a rigorous sampling method that uses molecular dynamics (MD) as a global Monte Carlo move. The acceptance rate of HMC decays exponentially with system size. The shadow hybrid Monte Carlo (SHMC) was previously introduced to reduce this performance degradation by sampling instead from the shadow Hamiltonian defined for MD when using a symplectic integrator. SHMC's perf...

متن کامل

Wormhole Hamiltonian Monte Carlo

In machine learning and statistics, probabilistic inference involving multimodal distributions is quite difficult. This is especially true in high dimensional problems, where most existing algorithms cannot easily move from one mode to another. To address this issue, we propose a novel Bayesian inference approach based on Markov Chain Monte Carlo. Our method can effectively sample from multimod...

متن کامل

Split Hamiltonian Monte Carlo

We show how the Hamiltonian Monte Carlo algorithm can sometimes be speeded up by “splitting” the Hamiltonian in a way that allows much of the movement around the state space to be done at low computational cost. One context where this is possible is when the log density of the distribution of interest (the potential energy function) can be written as the log of a Gaussian density, which is a qu...

متن کامل

Monte Carlo Hamiltonian

We construct an effective Hamiltonian via Monte Carlo from a given action. This Hamiltonian describes physics in the low energy regime. We test it by computing spectrum, wave functions and thermodynamical observables (average energy and specific heat) for the free system and the harmonic oscillator. The method is shown to work also for other local potentials. PACS index: o3.65.-w, 05.10.Ln ∗Cor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2022

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2022.3161443