SH-wave propagation in heterogeneous media: velocity-stress finite-difference method
نویسندگان
چکیده
منابع مشابه
P-SC/ wave propagation in heterogeneous media: Velocity-stress finite-difference method
I present a finite-difference method for modeling P-SV wave propagation in heterogeneous media. This is an extension of the method I previously proposed for modeling SH-wave propagation by using velocity and stress in a discrete grid. The two components of the velocity cannot be defined at the same node for a complete staggered grid: the stability condition and the P-wave phase velocity dispers...
متن کاملWave propagation across acoustic / Biot’s media: a finite-difference method
Numerical methods are developed to simulate the wave propagation in heterogeneous 2D fluid / poroelastic media. Wave propagation is described by the usual acoustics equations (in the fluid medium) and by the low-frequency Biot’s equations (in the porous medium). Interface conditions are introduced to model various hydraulic contacts between the two media: open pores, sealed pores, and imperfect...
متن کاملWave propagation in the heterogeneous lower crust – Finite Difference calculations
Wave propagation in heterogeneous media is not only characterized by reflection, transmission and conversion of seismic energy but also by effects such as scattering and tunneling and can be observed on many scales. We investigate elastic wave propagation in the lower crust of the earth. It is remarkable that distance and time scales in a deep crustal reflection problem can be easily transforme...
متن کاملMPI- and CUDA- implementations of modal finite difference method for P-SV wave propagation modeling
Among different discretization approaches, Finite Difference Method (FDM) is widely used for acoustic and elastic full-wave form modeling. An inevitable deficit of the technique, however, is its sever requirement to computational resources. A promising solution is parallelization, where the problem is broken into several segments, and the calculations are distributed over different processors. ...
متن کاملSpatial Parallelism of a 3D Finite Difference Velocity-Stress Elastic Wave Propagation Code
In a three-dimensional isotropic elastic earth, the wave equation solution consists of three velocity components and six stresses. We discretize the partial derivatives using second order in time and fourth order in space staggered finite difference operators. The parallel implementation uses the message passing interface library for platform portability and a spatial decomposition for efficien...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Exploration Geophysics
سال: 1984
ISSN: 0812-3985,1834-7533
DOI: 10.1071/eg984265a