Seshadri constants on surfaces with Picard number 1
نویسندگان
چکیده
منابع مشابه
Seshadri constants on algebraic surfaces
0. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. Seshadri constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Very ample line bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3. Bounds on global Seshadri constants . . . . . . . . . . . . . . . . . . . . . . . . 9 4. The degree of sub-maximal cu...
متن کاملComputing Seshadri Constants on Smooth Toric Surfaces
Abstract. In this paper we compute the Seshadri constants at the general point on many smooth polarized toric surfaces. We consider the case when the degree of jet separation is small or the core of the associated polygon is a line segment. Our main result is that in this case the Seshadri constant at the general point can often be determined in terms of easily computable invariants of the surf...
متن کاملSeshadri Constants on Rational Surfaces with Anticanonical Pencils
We provide an explicit formula for Seshadri constants of any polarizations on rational surfaces X such that dim |−KX | ≥ 1. As an application, we discuss relationship between singularities of log del Pezzo surfaces and Seshadri constants of their anticanonical divisors. We also give some remarks on higher order embeddings of del Pezzo surfaces.
متن کاملSeshadri constants and the geometry of surfaces
This numerical definition is equivalent to a more intuitive geometric definition. In particular, ǫ(x,A) is the supremum of all non–negative rational numbers α such that the linear series |nA| separates nα–jets at x for n sufficiently large and divisible. Note that if L is a nef line bundle on X then Definition 1 still makes sense and ǫ(x, L) is defined accordingly. When L is nef but not ample, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: manuscripta mathematica
سال: 2016
ISSN: 0025-2611,1432-1785
DOI: 10.1007/s00229-016-0893-4