Serre duality for tame Deligne–Mumford stacks
نویسندگان
چکیده
Abstract Using the exceptional inverse image functor for quasi-finite proper morphisms of separated tame Deligne–Mumford stacks finite type over a field k , Serre duality is obtained in varying degrees generality stacks. The approach follows that schemes.
منابع مشابه
Generalized Serre duality
We introduce the generalized Serre functor S on a skeletally-small Hom-finite Krull-Schmidt triangulated category C. We prove that its domain Cr and range Cl are thick triangulated subcategories. Moreover, the subcategory Cr (resp. Cl) is the smallest additive subcategory containing all the objects in C which appears as the third term (resp. the first term) of some Aulsander-Reiten triangle in ...
متن کاملSerre Duality and Applications
We carefully develop the theory of Serre duality and dualizing sheaves. We differ from the approach in [12] in that the use of spectral sequences and the Yoneda pairing are emphasized to put the proofs in a more systematic framework. As applications of the theory, we discuss the RiemannRoch theorem for curves and Bott’s theorem in representation theory (following [8]) using the algebraic-geomet...
متن کاملTannaka Duality for Geometric Stacks
Let X and S denote algebraic stacks of finite type over the field C of complex numbers, and let X and S denote their analytifications (which are stacks in the complex analytic setting). Analytification gives a functor φ : HomC(S,X) → Hom(S , X). It is natural to ask for circumstances under which φ is an equivalence. In the case where X and S are projective schemes, a satisfactory answer was obt...
متن کاملSerre Duality for Non-commutative P-bundles
Abstract. Let X be a smooth scheme of finite type over a field K, let E be a locally free OX -bimodule of rank n, and let A be the non-commutative symmetric algebra generated by E. We construct an internal Hom functor, HomGrA(−,−), on the category of graded right A-modules. When E has rank 2, we prove that A is Gorenstein by computing the right derived functors of HomGrA(OX ,−). When X is a smo...
متن کاملSerre-Taubes duality for pseudoholomorphic curves
According to Taubes, the Gromov invariants of a symplectic four-manifold X with b+ > 1 satisfy the duality Gr(α) = ±Gr(κ−α), where κ is Poincaré dual to the canonical class. Extending joint work with Simon Donaldson, we interpret this result in terms of Serre duality on the fibres of a Lefschetz pencil on X, by proving an analogous symmetry for invariants counting sections of associated bundles...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Research in the Mathematical Sciences
سال: 2022
ISSN: ['2522-0144', '2197-9847']
DOI: https://doi.org/10.1007/s40687-022-00367-7