Sequential Estimation of Gaussian Process-based Deep State-Space Models

نویسندگان

چکیده

We consider the problem of sequential estimation unknowns state-space and deep models that include functions latent processes models. The proposed approach relies on Gaussian are implemented via random feature-based processes. In these models, we have two sets unknowns, highly nonlinear (the values processes) conditionally linear constant parameters processes). present a method based particle filtering where integrated out in obtaining predictive density states do not need particles. also propose an ensemble version method, with each member having its own set features. With several experiments, show can track up to scale rotation.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Gaussian Process State Space Models

The Gaussian process state space model (GPSSM) is a non-linear dynamical system, where unknown transition and/or measurement mappings are described by GPs. Most research in GPSSMs has focussed on the state estimation problem, i.e., computing a posterior of the latent state given the model. However, the key challenge in GPSSMs has not been satisfactorily addressed yet: system identification, i.e...

متن کامل

Variational Gaussian Process State-Space Models

State-space models have been successfully used for more than fifty years in different areas of science and engineering. We present a procedure for efficient variational Bayesian learning of nonlinear state-space models based on sparse Gaussian processes. The result of learning is a tractable posterior over nonlinear dynamical systems. In comparison to conventional parametric models, we offer th...

متن کامل

Sequential Inference for Deep Gaussian Process

A deep Gaussian process (DGP) is a deep network in which each layer is modelled with a Gaussian process (GP). It is a flexible model that can capture highly-nonlinear functions for complex data sets. However, the network structure of DGP often makes inference computationally expensive. In this paper, we propose an efficient sequential inference framework for DGP, where the data is processed seq...

متن کامل

Computationally Efficient Bayesian Learning of Gaussian Process State Space Models

Gaussian processes allow for flexible specification of prior assumptions of unknown dynamics in state space models. We present a procedure for efficient Bayesian learning in Gaussian process state space models, where the representation is formed by projecting the problem onto a set of approximate eigenfunctions derived from the prior covariance structure. Learning under this family of models ca...

متن کامل

State Space Gaussian Process Prediction

Learning accurate models of complex clinical time-series data is critical for understanding the disease and its dynamics. Modeling of clinical time-series is particularly challenging because: observations are made at irregular time intervals and may be missing for long periods of time. In this work, we propose a new model of clinical time series data that is optimized to handle irregularly samp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 2023

ISSN: ['1053-587X', '1941-0476']

DOI: https://doi.org/10.1109/tsp.2023.3303648