Sequential Counterbalancing in Latin Squares

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transversals in Latin Squares

A latin square of order n is an n×n array of n symbols in which each symbol occurs exactly once in each row and column. A transversal of such a square is a set of n entries such that no two entries share the same row, column or symbol. Transversals are closely related to the notions of complete mappings and orthomorphisms in (quasi)groups, and are fundamental to the concept of mutually orthogon...

متن کامل

Lifting Redundancy from Latin Squares to Pandiagonal Latin Squares

In the pandiagonal Latin Square problem, a square grid of size N needs to be filled with N types of objects, so that each column, row, and wrapped around diagonal (both up and down) contains an object of each type. This problem dates back to at least Euler. In its specification as a constraint satisfaction problem, one uses the all different constraint. The known redundancy result about all dif...

متن کامل

Latin Squares: Transversals and counting of Latin squares

Author: Jenny Zhang First, let’s preview what mutually orthogonal Latin squares are. Two Latin squares L1 = [aij ] and L2 = [bij ] on symbols {1, 2, ...n}, are said to be orthogonal if every ordered pair of symbols occurs exactly once among the n2 pairs (aij , bij), 1 ≤ i ≤ n, 1 ≤ j ≤ n. Now, let me introduce a related concept which is called transversal. A transversal of a Latin square is a se...

متن کامل

Permutation patterns in Latin squares

In this paper we study pattern avoidance in Latin squares, giving us a two dimensional analogue of the well-studied notion of pattern avoidance in permutations. Our main results include enumerating and characterizing the Latin squares which avoid patterns of length three and a generalization of the Erdős-Szekeres theorem. We also discuss equivalence classes among longer patterns, and conclude b...

متن کامل

Indivisible plexes in latin squares

A k-plex is a selection of kn entries of a latin square of order n in which each row, column and symbol is represented precisely k times. A transversal of a latin square corresponds to the case k = 1. A k-plex is said to be indivisible if it contains no c-plex for any 0 < c < k. We prove that if n = 2km for integers k ≥ 2 and m ≥ 1 then there exists a latin square of order n composed of 2m disj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Mathematical Statistics

سال: 1966

ISSN: 0003-4851

DOI: 10.1214/aoms/1177699474