Sequence-Specific DNA Recognition with Designed Peptides
نویسندگان
چکیده
منابع مشابه
Chimeric recombinases with designed DNA sequence recognition.
Site-specific recombination typically occurs only between DNA sequences that have co-evolved with a natural recombinase enzyme to optimize sequence recognition, catalytic efficiency, and regulation. Here, we show that the sequence recognition and the catalysis functions of a recombinase can be specified by unrelated protein domains. We describe chimeric recombinases with a catalytic domain from...
متن کاملA MODEL FOR THE BASIC HELIX- LOOPHELIX MOTIF AND ITS SEQUENCE SPECIFIC RECOGNITION OF DNA
A three dimensional model of the basic Helix-Loop-Helix motif and its sequence specific recognition of DNA is described. The basic-helix I is modeled as a continuous ?-helix because no ?-helix breaking residue is found between the basic region and the first helix. When the basic region of the two peptide monomers are aligned in the successive major groove of the cognate DNA, the hydrophobi...
متن کاملIn vivo site-specific DNA methylation with a designed sequence-enabled DNA methylase.
As an alternative to the continual expression of transcriptional repressors to turn off genes after they have served their purpose, nature has developed epigenetic strategies that result in the covalent modification of DNA itself to induce heritable gene silencing. Mounting evidence supports the notion that once a genomic region has been targeted for silencing by acquisition of one or more cova...
متن کاملRationally designed coiled-coil DNA looping peptides control DNA topology
Artificial DNA looping peptides were engineered to study the roles of protein and DNA flexibility in controlling the geometry and stability of protein-mediated DNA loops. These LZD (leucine zipper dual-binding) peptides were derived by fusing a second, C-terminal, DNA-binding region onto the GCN4 bZip peptide. Two variants with different coiled-coil lengths were designed to control the relative...
متن کاملMetal-Dependent DNA Recognition and Cell Internalization of Designed, Basic Peptides
A fragment of the DNA basic region (br) of the GCN4 bZIP transcription factor has been modified to include two His residues at designed i and i+4 positions of its N-terminus. The resulting monomeric peptide (brHis2) does not bind to its consensus target DNA site (5'-GTCAT-3'). However, addition of Pd(en)Cl2 (en, ethylenediamine) promotes a high-affinity interaction with exquisite selectivity fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Organic Chemistry
سال: 2017
ISSN: 1434-193X
DOI: 10.1002/ejoc.201700988