Sequence Spaces Defined by Fibonacci Matrix

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On difference sequence spaces defined by Orlicz functions without convexity

In this paper, we first define spaces of single difference sequences defined by a sequence of Orlicz functions without convexity and investigate their properties. Then we extend this idea to spaces of double sequences and present a new matrix theoretic approach construction of such double sequence spaces.  

متن کامل

double sequence spaces defined by orlicz functions

in this paper we introduce some new double sequence spaces using the orlicz function andexamine some properties of the resulting sequence spaces.

متن کامل

Vector Valued multiple of $chi^{2}$ over $p$-metric sequence spaces defined by Musielak

In this article, we define the vector valued multiple of $chi^{2}$ over $p$-metric sequence spaces defined by Musielak and study some of their topological properties and some inclusion results.

متن کامل

on difference sequence spaces defined by orlicz functions without convexity

in this paper, we first define spaces of single difference sequences defined by a sequence of orlicz functions without convexity and investigate their properties. then we extend this idea to spaces of double sequences and present a new matrix theoretic approach construction of such double sequence spaces.

متن کامل

Compactness of Matrix Operators on Some Sequence Spaces Derived by Fibonacci Numbers

In this paper, we apply the Hausdorff measure of noncompactness to obtain the necessary and sufficient conditions for certain matrix operators on the Fibonacci difference sequence spaces `p(F̂ ) and `∞(F̂ ) to be compact, where 1 ≤ p <∞.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: General Letters in Mathematics

سال: 2019

ISSN: 2519-9269,2519-9277

DOI: 10.31559/glm2019.6.2.1