SeqAcademy: an educational pipeline for RNA-Seq and ChIP-Seq analysis
نویسندگان
چکیده
منابع مشابه
iRAP - an integrated RNA-seq Analysis Pipeline
RNA-sequencing (RNA-Seq) has become the technology of choice for whole-transcriptome profiling. However, processing the millions of sequence reads generated requires considerable bioinformatics skills and computational resources. At each step of the processing pipeline many tools are available, each with specific advantages and disadvantages. While using a specific combination of tools might be...
متن کاملGrape RNA-Seq analysis pipeline environment
MOTIVATION The avalanche of data arriving since the development of NGS technologies have prompted the need for developing fast, accurate and easily automated bioinformatic tools capable of dealing with massive datasets. Among the most productive applications of NGS technologies is the sequencing of cellular RNA, known as RNA-Seq. Although RNA-Seq provides similar or superior dynamic range than ...
متن کاملSINCERA: A Pipeline for Single-Cell RNA-Seq Profiling Analysis
A major challenge in developmental biology is to understand the genetic and cellular processes/programs driving organ formation and differentiation of the diverse cell types that comprise the embryo. While recent studies using single cell transcriptome analysis illustrate the power to measure and understand cellular heterogeneity in complex biological systems, processing large amounts of RNA-se...
متن کاملA ChIP-Seq Data Analysis Pipeline Based on Bioconductor Packages
Nowadays, huge volumes of chromatin immunoprecipitation-sequencing (ChIP-Seq) data are generated to increase the knowledge on DNA-protein interactions in the cell, and accordingly, many tools have been developed for ChIP-Seq analysis. Here, we provide an example of a streamlined workflow for ChIP-Seq data analysis composed of only four packages in Bioconductor: dada2, QuasR, mosaics, and ChIPse...
متن کاملshortran: a pipeline for small RNA-seq data analysis
UNLABELLED High-throughput sequencing currently generates a wealth of small RNA (sRNA) data, making data mining a topical issue. Processing of these large data sets is inherently multidimensional as length, abundance, sequence composition, and genomic location all hold clues to sRNA function. Analysis can be challenging because the formulation and testing of complex hypotheses requires combined...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: F1000Research
سال: 2019
ISSN: 2046-1402
DOI: 10.12688/f1000research.14880.3