Sensitivity of SnO2 nanoparticles/reduced graphene oxide hybrid to NO2 gas: a DFT study

نویسندگان

چکیده

The sensitivity of SnO2 nanoparticles/reduced graphene oxide hybrid to NO2 gas is discussed in the present work using density functional theory (DFT). nanoparticle shapes are taken as pyramids, proved by experiments. reduced (rGO) edges have oxygen or oxygen-containing groups. However, upper and lower surfaces rGO clean, expected from reduction procedure. Results show that particles connected at rGO, making a p-n heterojunction with agglomeration high sensitivity. DFT results good agreement experimental characterization both energy gap X-ray photoelectron spectroscopy (XPS) values. Gibbs free energy, enthalpy, entropy various considered reactions calculated. rGO/SnO2 result interplay dissociation oxidation gas. increases temperature until air reduces concentration NO2.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Sno2/Reduced Graphene Oxide Nanocomposite Films for Sensing No2 Gas at Room-Temperature

One-pot polyol process was combined with metal organic decomposition (MOD) method to fabricate a room-temperature NO2 gas sensor based on tin dioxide and reduced graphene oxide (SO2/RGO) nanocomposite films. X-ray diffractometry (XRD) and scanning electron microscopy (SEM) were used to analyze the structure and morphology of the fabricated films. The electrical and NO2 gas-sensing properties of...

متن کامل

DFT Study of Nitrous Oxide Adsorption on the Surface of Pt-Decorated Graphene

In the present study we search potential of Pt-decorated graphene (PtG) as a new nanostructure adsorbent for nitrous oxide (N2O) using density functional theory (DFT). After fully relaxation of different possible orientations of N2O-PtG complex, we distinguished two optimized configurations for this system; 1- terminal N-side of gas is oriented towards Pt so that the molec...

متن کامل

Characterization of Reduced Graphene Oxide (rGO)-Loaded SnO2 Nanocomposite and Applications in C2H2 Gas Detection

Acetylene (C2H2) gas sensors were developed by synthesizing a reduced graphene oxide (rGO)-loaded SnO2 hybrid nanocomposite via a facile two-step hydrothermal method. Morphological characterizations showed the formation of well-dispersed SnO2 nanoparticles loaded on the rGO sheets with excellent transparency and obvious fold boundary. Structural analysis revealed good agreement with the standar...

متن کامل

Sulfophenyl-Functionalized Reduced Graphene Oxide Networks on Electrospun 3D Scaffold for Ultrasensitive NO2 Gas Sensor

Ultrasensitive room temperature real-time NO₂ sensors are highly desirable due to potential threats on environmental security and personal respiratory. Traditional NO₂ gas sensors with highly operated temperatures (200-600 °C) and limited reversibility are mainly constructed from semiconducting oxide-deposited ceramic tubes or inter-finger probes. Herein, we report the functionalized graphene n...

متن کامل

TiO2/Graphene oxide nanocomposite as an ideal NO gas sensor: A density functional theory study

We performed a density functional theory investigation on the structural and electronic properties of pristine and nitrogen-doped TiO2/Graphene oxide nanocomposites as the adsorbents for the removal of toxic NO molecules in the environment. We presented the most stable adsorption configurations and examined the interaction of NO molecule with these doped and undoped nanocomposites. It turns out...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Structural Chemistry

سال: 2022

ISSN: ['1572-9001', '1040-0400']

DOI: https://doi.org/10.1007/s11224-022-01987-z