Sensitivity analysis for incomplete continuous data
نویسندگان
چکیده
منابع مشابه
Maximum likelihood parameter estimation from incomplete data via the sensitivity equations: the continuous-time case
This paper is concerned with maximum likelihood (ML) parameter estimation of continuous-time nonlinear partially observed stochastic systems, via the expectation maximization (EM) algorithm. It is shown that the EM algorithm can be executed efficiently, provided the unnormalized conditional density of nonlinear filtering is either explicitly solvable or numerically implemented. The methodology ...
متن کاملHash-Based Feature Learning for Incomplete Continuous-Valued Data
Hash-based feature learning is a widely-used data mining approach for dimensionality reduction and for building linear models that are comparable in performance to their nonlinear counterpart. Unfortunately, such an approach is inapplicable to many real-world data sets because they are often riddled with missing values. Substantial data preprocessing is therefore needed to impute the missing va...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TEST
سال: 2010
ISSN: 1133-0686,1863-8260
DOI: 10.1007/s11749-010-0219-x